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Summary

The manufacturing industry is currently undergoing a significant transformation with the advent
of the fourth industrial revolution. This shift necessitates extensive research in areas such as
smart maintenance and production automation, particularly in self-configuration systems. To
truly understand the implications and benefits of these concepts, it is crucial to showcase real-
world test cases and pilot studies, providing insights into how companies can effectively implement
these procedures. This report presents two specific approaches aligned with smart maintenance
and machine self-configuration systems, which stem from previous deliverables aiming to unify,
conceptualize, and present a framework. The first use case demonstrates machine configuration
based on a product-driven manufacturing approach, utilizing a Fanuc robotic platform as a test
case. The second use case focuses on a tool wear monitoring bench, where the main objective
is to predict tool wear using an immune bio-inspired approach. Both use cases offer substantial
advantages over traditional solutions in terms of flexibility and adaptability, highlighting their
potential for enhancing manufacturing processes.
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Foreword

DiManD aims to develop a high-quality multidisciplinary, multi-professional, and cross-sectorial
research and training framework for Europe. The purpose is to improve Europe’s industrial
competitiveness by designing and implementing an integrated programme in the area of intelligent
informatics-driven manufacturing, which will form the benchmark for training future Industry 4.0
practitioners. This will be done in compliance with the industrial requirements such revolutionary
production systems will pose, and specifically, this deliverable will represent one further step
forward, by attempting to design and validate two frameworks and by providing pilot use cases
for its validation. In particular, this deliverable will showcase a self-monitoring and self-diagnosis
approach (based on the artificial immune system) and a self-configuration-based manufacturing
system. The main design patterns will be summarized as well as the application of them in an
experimental setup.

1 Introduction

1.1 Self-configuration in manufacturing

Industry 4.0 has reshaped manufacturing with IoT, AI, and big data. Companies now need
adaptable production systems that autonomously optimize efficiency and quality. To meet this
need, self-configuring systems that adjust in real-time have become crucial. Integrating multi-
agent systems and new emerging technologies seems a promising path to creating this level of
adaptability.

1.1.1 Manufacturing self-configuration - Definition

Under the scope of this work, we consider self-configuration as: It is the ability of a system to
change its configuration (i.e., the connection between different system modules, parameters, and
calibration) in order to improve or restore system functionality in response to actions [1].

In manufacturing processes, products with different requirements need different resource con-
figurations. This configuration update is usually carried out manually which is not very effective
considering current market dynamism.

This has been partially solved by the introduction of flexible manufacturing systems or Su-
pervisory Control and Data Acquisition (SCADA) systems. However, those usually operate
under a predefined working envelope defined by the part family, reducing its capacity of adapta-
tion. Thus, the need of having the ability of robotic platforms to self-configure considering new
production specifications.

1.1.2 Refined stated of the art and Gap analysis

Several studies have suggested self-configuring manufacturing. In one framework detailed in [1],
they propose using agent technologies and a cloud pipeline to find the best setup parameters.
Another idea in [2] suggests self-configuring a plug-and-produce system using a service-oriented
workflow manager. Other research focuses on process configuration using agent technologies,
ontological models (like in [3, 4, 5, 6, 7]), or web services (as discussed in [8]).
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Most of these methods assume that resources either come pre-equipped with a set of skills
or rely on a central platform to coordinate services or provide new capabilities. However, the
rapidly changing market and unexpected events, like the Covid-19 pandemic prompting automak-
ers to shift to manufacturing medical equipment, highlight the limitations of such predefined ap-
proaches. Relying heavily on a centralized unit’s knowledge can pose risks—if it fails, the entire
manufacturing process suffers. Thus, emphasizing the importance of resource self-configuration
independent of a centralized system, capable of adapting at runtime without additional updates,
driven solely by product requirements (referred to as intelligent produce-driven manufacturing
[9]).

1.1.3 Contribution of the current framework

Our goal is to address this challenge by introducing a framework for self-configuring robotic
platforms. This framework assumes a self-organizing process where raw materials are trans-
ported to specific robotic platforms, possibly using Automated Guided Vehicles (AGVs). This
concept responds to the need for self-management in highly flexible shop floors, such as the
matrix production concept developed by KUKA, where logistics and production components
operate independently [10]. In this matrix production, a fleet of AGVs handles end effectors and
raw materials for production cells, enabling versatile production that can adapt quickly to new
requirements [10].

Our focus is on creating a framework that allows robotic platforms to configure themselves
within an intelligent product-driven manufacturing setup, with a strong emphasis on software
integration. The product itself holds crucial information about operations, parameters, and
configurations, transmitting these details to the robotic platforms through a Multi-Agent Archi-
tecture. Details about the framework and its components are outlined in the next section of the
report.

1.2 Self-diagnosis and self-monitoring in manufacturing

1.2.1 Smart Maintenance

Advancements in computer technology have facilitated the creation of intelligent maintenance
frameworks. These systems forecast potential failures beforehand and assist in decision-making
for maintenance tasks. These frameworks employ three main methods: mathematical modeling,
simulation, and data analysis. They leverage emerging technologies such as:

1. IoT and Cloud: Sensors linked through IoT, alongside Cloud technology for data handling,
enable the real-time transmission and processing of shop floor data.

2. Machine Learning: Enhanced mathematical models and ML algorithms enable precise
predictions regarding machine conditions and maintenance needs.

3. Big Data: The capacity to gather, transmit, store, process, and visualize large datasets
from the shop floor facilitates the effective use of advanced ML and data visualization
techniques for accurate maintenance decisions.
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4. Multi-Agent Systems: Utilizing agents capable of independent tasks and collaboration aids
in developing resilient and decentralized maintenance systems.

5. Digital Twin: Virtual representations of physical systems assist in creating simulated en-
vironments for pre-failure testing and remote access to physical setups.

6. Augmented Reality: AR supports operators in real-time machine condition monitoring and
provides adaptive guidance for necessary adjustments.

Limitations of existing frameworks: The emerging technologies have high potential in develop-
ing a smart maintenance system in satisfying the new requirements like robustness, adaptability,
resilience, anti-fragility and pro-activity [11]. There exists a need for integrating these technolo-
gies to fully utilize their combined benefits. Also, all the developed approaches depend on these
current technologies and is not based on a future proof framework. There is also a need for a
future proof framework which could easily adapt to newly developed technologies and also satisfy
new smart maintenance requirements.

1.2.2 Smart Maintenance based on the Immune System - Gap analysis

An immune system-based maintenance framework applies principles from the human immune
system to manage manufacturing equipment and processes on the shop floor. It detects and
responds to anomalies, defects, and failures.

The human immune system is a vast and intricate network found throughout the body,
composed of various cells, proteins, and organs such as the thymus and spleen. It has evolved
over billions of years to protect against bacteria, viruses, fungi, and cancerous cells.

Artificial immune systems, inspired by the human immune system, are a focus of engineering
research. They involve abstracting, designing, and implementing models using mathematical
algorithms and computational techniques. Early applications included fault diagnosis in sensory
networks.

The immune system-based maintenance framework incorporates immune mechanisms to de-
velop a predictive and adaptive system. Key mechanisms include the danger model, negative
selection, and clonal selection. These mechanisms mimic how the immune system responds to
threats by detecting intruders, distinguishing between healthy and infected cells, and producing
antibodies to combat invaders.

1. Danger Model: The healthy cells which was damaged due to the intruders/infected cells
sends panic signals which is attracted by the Dendritic cells and these cells collects a sample
of the intruders (antigen) for selecting the appropriate T-cells.

2. Negative selection: T-cells are designed to identify the difference between the body cells
and infected/foreign cells. This knowledge is crucial is preventing the immune system from
attacking healthy human cells.

3. Clonal selection: Once a specific B-cell is identified by the T-cell, the B-cell starts producing
copy of itself (cloning) and the cloned B-cells produce antibodies which help in attacking
the intruders.
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Table 1 lists highly cited publications which uses immune system as the base for developing
a fault diagnosis and maintenance system. Very few paper tried to develop a framework consid-
ering more than one immune mechanism. Laurentys et. al. [12] developed a decision support
system considering negative selection and danger model where immune response was triggered
by alarms. The same author in a later publication [13] presented a zero sum balance mechanism
for identifying harmful activities by considering natural killer cell activation & education. Araujo
et. al. [14] showed a framework for a ”self” and ”non-self” dynamic pattern recognition model
inspired by negative and clonal selection. Thumati et. al. [15] developed an online approximator
for fault detection in axial piston pump by using negative selection and memory cell intelligence
capabilities. In an monitoring application outside of shop-floor, Chen et. al. [16] demonstrated
an adaptive immune response pattern recognition algorithm based on negative & clonal selection
for detecting structural damage pattern in steel bridge structure.

Limitations of existing frameworks: Proposed frameworks consider the interaction between
2-3 cells (Immune system consist of 21 different cells and 2 protein forces) which doesn’t provide
the full picture of the human immune system. In fact, immune system protects us by providing
two types of immunity - Innate & adaptive. All the proposed mechanisms in the literature fo-
cuses on the adaptive immunity. Innate immunity is essential for quick detection and response,
which also helps in reducing the need for triggering the more resource expensive adaptive im-
munity with specialized defense mechanisms. Hence mapping the entire immune system provide
a more holistic view which might give valuable insights in developing an adaptive and resilient
maintenance framework.
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Table 1: Immune system based maintenance framework
Reference Cells

Involved
Immune

mechanism
Framework/Approach Use

Case/Application

Dai et.
al.,2011 [17]

Antibodies Clonal
selection
algorithm

Dynamic time wrapping algorithm
generated for known normal & fault

samples

Penicillin
fermentation

process
Laurentys
et. al.,2010

[12]

Not
Specified

Negative
selection &

Danger
Model

Decision making tool in dynamic
system support with immune

response triggered by
alarms/dangerous signals

DC motor fault
detection

Laurentys
et. al.,2010

[18]

Dendritic*
& Helper
T-cell

Danger
Model

Immune Danger Model for dynamic
system fault detection

Actuator
controlled water

flow boiler
Huang et.

al.,2002 [19]
Antibodies Clonal

selection
algorithm

Affinity calculation to measure the
combination intensity to prevent

process stagnation

Taiwan Power
System

Laurentys
et. al.,2011

[13]

Natural
killer cells

Natural
killer cell
activation

& education

Zero sum balance mechanism in
identifying the difference between

normal and potential harmful
activities

Actuator
controlled water

flow boiler

Bradley et.
al.,2000 [20]

T cells Negative
selection

Self/non-self recognition in
differentiating acceptable and

abnormal states and transitions

Simulation using
FPGA

development board
Aydin et.

al.,2012 [21]
Antibodies
& memory

cells

Negative
selection

Affinity between antibody and
antigen for fault classification by

assigning antibody set for each class
and applied to the model

Induction motor
faults

Chilengue
et. al.,2011

[22]

T-cells &
B-cells

Negative
selection

Dynamic detection of the pathogens
followed by construction a

characteristic image of machines
operating condition

Stator and rotor
circuits of
induction
machines

Ghosh et.
al.,2011 [23]

T-cells &
B-cells

Negative
selection

Normal state samples (self) uses to
develop a description of the

non-self-space

Tank Reactor,
Penicillin

Cultivation,
Distillation

Column
Araujo et.

al.,2003 [14]
T-cell &
B-cell

Negative
selection &

Clonal
selection

”Self” & ”non-self” pattern
recognition model for dynamic
learning of product patterns

Gas lift oil well

Alizadeh et.
al.,2017 [24]

Dendritic
cell

Danger
Model

Detection as well as isolation of
sensor faults with a given dual sensor

redundancy

Wind Turbine

Thumati et.
al.,2012 [15]

T-cell &
B-cell,
memory

cells

Negative
selection &
Memory

capability

Online approximator in discrete-time
(OLAD) in a fault detection (FD)

observer

Axial piston pump

Chen et.
al.,2010 [16]

B-cells,
T-cells,

Antibodies,
Dendritic

cells

Negative
selection &

Clone
selection

Adaptive immune response with
pattern recognition algorithm tuned

to a certain type of structural
damage pattern

Scaled steel bridge
structure

Abid et.
al.,2017 [25]

Antibodies$ Negative
selection

feature extraction & selection with
feature space transformation followed
by optimization considering non-self

feature space

Motor bearing
fault detection

Alizadeh et.
al.,2016 [26]

T-cells Negative
selection

Negative selection algorithm design
for detection and isolation of common

occurring faults

Wind Turbine

* - presented in the work as Antigen Presenting Cell, $ - T-Cells determines negative selection not antibodies
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2 Developed Frameworks

2.1 Self-configuration Framework

2.1.1 Vision and Assumptions

This chapter details the framework’s implementation, covering its developmental assumptions
and methodologies for machine configuration.

The developed framework is designed to optimize the production of single-component prod-
ucts. To achieve this, certain assumptions have been made about the process:

• Product Characteristics: All products are presumed to be single-component, each with
predefined tasks based on their characteristics. This streamlines the production process for
efficiency.

• Machines and Tools: All machines are stationary and equipped with their own tools, en-
suring consistent quality and minimizing the need for extra equipment. The work does not
involve jigs and fixtures for machining processes.

• Batch Size: The assumption of batch size one means individual production for each product,
leading to a more specialized and personalized manufacturing process.

• Process Flow: Products follow a predetermined sequence of one or more sequential tasks
based on their characteristics, ensuring consistency and efficiency in production.

• Intelligent Products: Products are intelligent, interacting with the production process and
providing feedback for continuous improvement.

In essence, the developed manufacturing framework optimizes single-component product pro-
duction through consistent product characteristics, specialized machinery, batch size one produc-
tion, predetermined process flow, intelligent products, efficient material handling, and bypassing
a process planning stage. These assumptions collectively result in a more efficient and stream-
lined production process, generating high-quality single-component products.

2.1.2 Multi-agent based representation

This framework needs various agents to establish the proposed control logic for achieving the
desired autonomy and distributed design. Here is a list and description of such elements:

• Product Agent: This agent serves as a logical representation of the physical product. It
has knowledge of the required manufacturing operations.

• Machine Monitoring Agent: This agent acts as a logical abstraction of the health status of
individual machines, enabling the calculation of variables such as Remaining Useful Life.

• Machine Configuration Agent: This agent provides a logical abstraction of the specific
parameters for configuring each machine. It interacts with individual machines to provide
tailored configuration parameters based on the product’s requirements.

This project has received funding from
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• Transport Agent: It serves as a logical abstraction of the shop floor’s transport elements.
This agent handles the transportation of raw materials to specific machines in accordance
with the product’s requirements.

• Collection Transport Group: Functioning as an element that acts as a directory, this com-
ponent stores and manages relevant information regarding available transport agents.

• Collection Machine Group: Acting as a directory, this element stores and organizes perti-
nent information related to machine agents within the system.

The developed framework of this work is presented in Fig. 1.

Figure 1: Multi-Agent based representation

2.1.3 Process flow representation (Product Agent)

The process flow depicts essential steps for assembly. It outlines tasks crucial for raw material
execution, a complex modeling effort. Inspired by [27], we propose a streamlined representation,
focusing on:

• Process flow: Contains necessary sequential information for product assembly, with at least
one task.

This project has received funding from
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• Task: Represents fundamental assembly operations (e.g., picking and placing, screwing,
welding), composed of finer process steps.

• Process step: Defined as an elementary operation in a process flow, indivisible into sub-steps
[27]. Process steps form a functional robotic platform configuration, expressed through
attributes (e.g., end effector movement, gripping).

Fig. 2(a) sketches a product’s process flow and components. Fig. 2(b) details a process step’s
composition, showing examples like movement and gripping. Fig. 2(c) illustrates task sequences
using process steps, like picking and placing and screwing.

Figure 2: Process flow representation for machine self-configuration

2.1.4 Multi-agent based negotiation

The process logic starts with the launch of a new intelligent product. Each product entails
at least one task, executed sequentially. Upon task initiation, it’s routed to a machine group,
which, based on available data, identifies suitable machine agents through a capability-matching
process.

The optimal machine selection factors in availability, functional machine parameters, and their
Remaining Useful Life (RUL). Each machine agent is linked to a monitoring agent, activating to
return the calculated RUL.
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Following the identification of the machine with optimal parameters, the configuration agent
is activated. This agent provides specific configuration parameters tailored to the product’s
requirements. Once the machine is configured, an available transport resource is selected to
move the product to its subsequent location.

Within the workspace of the designated machine, the task is executed. Upon completion, the
sequential process repeats for the next task until all tasks are performed. Figure 3 illustrates the
logical sequence outlined in this paper.

Figure 3: Multi-Agent based negotiation for machine self-configuration
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2.2 Self-diagnosis and self-monitoring Framework

A Self-diagnosis and Self-monitoring Framework draws parallels with the immune system and
leverages emerging technologies to enhance efficiency and effectiveness. This framework is in-
spired by the immune system’s ability to detect, respond, and adapt to abnormalities or threats
within the body. Similarly, in manufacturing environments, the goal is to develop systems that
can autonomously detect issues, predict potential failures, and optimize performance. Just as
the immune system continuously monitors the body for signs of illness or dysfunction, the Self-
diagnosis and Self-monitoring Framework continuously assesses the health and performance of
manufacturing processes and equipment.

It mimics the immune system’s ability to recognize and respond to anomalies swiftly. This
framework utilizes cutting-edge technologies such as artificial intelligence, machine learning, In-
ternet of Things (IoT), and big data analytics to gather data from various sensors and sources
within the manufacturing environment. These technologies enable real-time monitoring, analy-
sis, and decision-making, similar to how the immune system processes information from different
parts of the body.

Drawing from the self-healing capabilities of the immune system, this framework emphasizes
proactive and predictive maintenance strategies. By analyzing data patterns and historical per-
formance, it can anticipate potential equipment failures or degradation and initiate maintenance
actions before significant issues arise. This approach minimizes downtime, reduces costs, and
optimizes productivity.

2.2.1 Immune system holistic view

Gaining a comprehensive understanding of the human immune system holds significant promise
for informing the development of an immune-based maintenance framework. Ranked as the
second most intricate system globally, following only the human brain, it is essential to provide
a simplified overview of the immune system, focusing on key concepts crucial for crafting such a
framework. The immune system functions to neutralize three primary types of disease-causing
entities: parasitic worms, pathogens, and infected cells. In this overview, emphasis is placed
specifically on the immune response against pathogens (refer to Fig. 4). It’s worth noting that
similar immune mechanisms are employed in combatting the other two types of disease cells.
Each immune cell is assigned a primary task, accompanied by a maximum of three secondary
responsibilities. For instance, macrophages are primarily tasked with pathogen elimination, while
also possessing secondary roles in cell communication and activation of other immune cells [28].

• Innate and Adaptive : The human immune system oversees and preserves our well-being
through various stages, employing a diverse array of cells for specific functions. It operates
through two main types of immunity: Innate and Adaptive. Innate immunity, present since
birth, employs general-purpose cells to combat a wide range of pathogens. On the other
hand, Adaptive immunity utilizes specialized cells with targeted attacks against specific
pathogens, exerting a profound impact on their designated targets.

• Innate Immunity [28]: The innate immune system acts as the body’s initial defense mecha-
nism against pathogens, operating from birth and providing a non-specific response. When
pathogens invade, they rapidly multiply and alter their surroundings, triggering a response
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Figure 4: Innate and Adaptive Immune cells

from damaged cells which activate innate immune cells like Macrophages, Neutrophils, and
complements. These cells work to neutralize the threat by engulfing invaders, trapping
them, and breaking them down using enzymes or releasing toxins. Typically, innate immu-
nity successfully combats attacks, but in the case of stronger pathogens, dendritic cells are
mobilized to gather antigen samples and initiate the next stage of the immune response.

• Adaptive Immunity [29, 30]: Innate immunity is a broad and immediate defense mechanism
present from birth, providing nonspecific protection against various pathogens. On the
other hand, adaptive immunity is a more targeted response that develops over time upon
exposure to specific pathogens. Dendritic cells in the lymph nodes activate helper T-
cells, which then trigger a cascade of events, including the duplication of helper T-cells
to support macrophages and the activation of specific B-cells. These activated B-cells
produce antibodies that bind to pathogens, providing saturation and protection against
their attack. Additionally, some T and B cells become memory cells, ensuring a quicker
and more effective response upon encountering the same pathogen in the future.

• Intelligence and Response: The responsibilities of immune cells, encompassing both in-
nate and adaptive immunity, can be categorized into two main functions: tasks related to
gathering intelligence and tasks focused on generating responses.

• Innate and Adaptive Intelligence [31, 32]: Macrophages are pivotal in innate immunity,
detecting distress signals like cytokines to prompt immune reactions, including recruiting
neutrophils and complement proteins. They also signal their location and urgency and
can summon dendritic cells to enhance adaptive immunity. Dendritic cells, after collecting
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antigens, trigger specific immune responses like anti-bacterial defenses and engage helper
T cells to ensure precise immune reactions, preventing harm to healthy cells. Ultimately,
helper T cells collaborate with B cells to execute targeted immune responses.

• Innate and Adaptive Response [33]: In the innate response, macrophages, large cells ap-
proximately 21mm in diameter, defend against invaders by engulfing up to 100 intruders,
enclosing them within a membrane, and breaking them down with enzymes. They also in-
duce inflammation by prompting blood vessels to release water into the infected area, while
complement proteins disable bacteria by creating holes in their membranes. Neutrophils
contribute by releasing toxins that form barriers to trap and kill bacteria, although they
are subsequently eliminated to prevent harm to healthy cells. In the adaptive response,
T-cells assist macrophages with chemical signals, while B-cells produce antibodies at a rate
of around 2000 antibodies per second, saturating the battlefield to incapacitate bacteria
and aid macrophage function.

• Libraries and Memory Support [34, 28]: Adaptive immune cells possess specialized ca-
pabilities to defend against existing and potential future diseases, facilitated through the
processes of development, training, and storage within the Thymus, bone marrow, and
lymph nodes. This intricate system utilizes a combination of gene segments to create a
diverse array of proteins capable of recognizing virtually any protein encountered. Memory
cells play a crucial role in providing enhanced protection upon subsequent encounters with
familiar pathogens, thereby bolstering the immune response against future threats.

2.2.2 Immune system and emerging technologies

This section details the interconnection of current emerging technologies and their potential
application in achieving the essential attributes of the immune system. Six crucial characteristics
have been recognized, offering insights into the development of an intelligent maintenance system.

• Ignorant but collaborative : Immune cells have specific roles but lack centralized control,
working collaboratively to keep the body safe. Their behavior resembles a multi-agent
system, where each cell performs its task while also collaborating with others to achieve
overall goals.

• Federated system : The immune system operates across various body locations, supported
by a vast transport network of lymph vessels. The innate immune response operates at sites
of damage, while adaptive immunity develops in lymph nodes. Achieving a federated system
for immune function could involve Edge, Fog, and Cloud computing with decentralized
control, along with the potential integration of IoT devices. (See Table 2)

• Distributed Intelligence : The text discusses the two types of intelligence in the immune
system, innate and adaptive, and proposes the utilization of technologies like Ontologies
and Machine Learning to achieve distributed intelligence. It refers to Table 1 for details
on different tasks and their implementation using Machine Learning. (See Table 2)

• Extensive Knowledge Base : The adaptive immune system possesses a vast knowledge
base enabling it to resist diseases past, present, and potentially future by connecting to all
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possible proteins in the universe. It retains memory of past attacks and defensive strategies
throughout its lifespan. This extensive knowledge is acquired and managed through Big
Data techniques, including data injection, storage, processing, and retrieval.

• Intelligent Response System : In the preceding section, we discussed the immune system’s
two main responses: innate and adaptive. These responses can be implemented across
different areas of maintenance using Digital Twin for remote assistance and Augmented
Reality (AR) for on-site support. For example, in tool condition monitoring, Digital Twin
technology can facilitate adjustments to CNC machine parameters, while AR can assist
maintenance personnel with tool replacement tasks.

• Complex System : The human immune system is incredibly complex, ranking second only
to the human brain. While automation has progressed in computer systems, there’s a need
for human-centered AI approaches to manage the intricate nature of smart maintenance
systems, particularly in decision-making areas where humans may need to collaborate with
AI tools.

Table 2: Innate and Adaptive intelligence using Machine Learning and Cloud technologies
Task Cells Innate

/ adap-
tive

Body
Loca-
tion

Machine
Learning

Edge /
Cloud

Release &
attract to
cytokines

Macrophages Innate Damage
site

Classification Edge

Collect
Antigen

Dendritic
cell

Innate Damage
site

Feature
Extraction

Edge

Activate the
specific

Virgin T-cell

Dendritic
cell

Adaptive Lymph
nodes

Clustering
Algorithm
Selection

Cloud

Identify
between
body &

bacteria cell

Helper
T-cell

Adaptive Lymph
nodes

Labelling Cloud

Activate the
specific

virgin B-cell

Helper
T-cell

Adaptive Lymph
nodes

Classification
Algorithm
Selection

Cloud

2.2.3 Immune system-based Smart Maintenance Framework

The concept draws from the comprehensive understanding of the immune system and advance-
ments in computer technology. We suggest a sophisticated maintenance approach for intricate
shop-floor operations. This framework comprises four key modules: Physical Asset, Innate
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Figure 5: Immune based smart maintenance framework

Maintenance, Adaptive Maintenance, and Knowledge Base. Each module is composed of various
components aimed at fulfilling specific functions (refer to Fig. 5).

Physical Asset: The physical asset discussed in this paper refers to machinery, equip-
ment, or components requiring maintenance. Throughout the paper, these assets are collectively
referred to as ”machines.” Additionally, it includes a network of sensors aimed at monitoring
machines and collecting real-time data for maintenance purposes.

• Sensor Network :A sensor network is crucial for monitoring the real-time status of machines
targeted for maintenance, with various sensors such as force, vibration, temperature, etc.,
being commonly used. Employing multiple sensors can enhance prediction accuracy. Key
considerations during data acquisition include sensor placement, sampling frequency deter-
mination based on factors like sensor limitations and connection type, and implementing
noise reduction techniques such as filtering.

• Data acquisition: The proposed framework allows for sensor data transmission in both
wired and wireless formats. This data serves two purposes: real-time monitoring and re-
sponse by the Innate maintenance system, and storage in a Knowledge base for future use
in developing an adaptive model. The choice between wired and wireless transmission de-
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pends on the sampling frequency, with wireless transmission preferred for lower frequencies
due to its simplicity and flexibility in sensor placement.

• Internet of Things and Edge and Cloud Storage : The sensors function akin to Internet
of Things devices, transmitting data from the edge to cloud storage within the knowledge
base. Additionally, local edge storage is essential to handle transmission disruptions and
data loss effectively.

Innate Maintenance: Innate maintenance involves ongoing monitoring and immediate
responses to machine issues, typically performed near the equipment.

• Real-time monitoring : The real-time monitoring of sensor data from the physical asset
allows for the assessment of the machine’s current state based on an established model.
This process involves data processing and analytics algorithms created by adaptive mainte-
nance. Predictions regarding the machine’s condition are made and relayed to the context
awareness block to determine necessary actions.

• Machine Learning, Edge and Cloud computing : Machine learning is used for data ana-
lytics, with adaptive maintenance deploying models for real-time machine condition pre-
diction, necessitating care in addressing online prediction constraints, especially for edge
deployment. Edge devices require high processing power to handle complex models, along
with a parallel data storage system for cloud storage, considering potential data missing
during online prediction and for future processing. Long-term model deployment requires
consideration of data drift, suggesting updates to ensure adaptiveness and resilience.

• Innate Response System : The maintenance system offers rapid responses to machine needs,
with online predictions enabling implementation of various response systems. Alarm signals
notify operators of machine status, prompting adjustments or halting operations via control
systems.

• Augmented Reality : Operators use augmented reality (AR) to perform maintenance tasks
efficiently by following instructions relayed by an adaptive response system, enhancing their
effectiveness in responding to alarm signals. AR assists operators by providing step-by-
step instructions for carrying out maintenance activities, improving their ability to address
current situations promptly.

• Context Awareness : A system analyzes sensor signals and responses prior to real-time
monitoring. It focuses on detecting concept/data drift in signals and updating monitoring
accordingly. It assesses response validity against expected outcomes, including Remaining
Useful Life (RUL) calculations based on machine knowledge and operator expertise. Ab-
normal signals or responses prompt adaptive maintenance and potential updates to the
real-time monitoring system for further analysis.

• Multi-agent system and Ontology : Ontologies facilitate sensor signal analysis and capture
expert knowledge, enabling reasoned model responses. Within maintenance systems, indi-
vidual blocks function as agents with specific tasks, communicating and collaborating with
others to achieve collective objectives.
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Adaptive Maintenance: Adaptive maintenance involves detailed analysis and develop-
ment of real-time monitoring algorithms, drift analysis, and responsive systems. It’s typically
conducted remotely from the physical asset to optimize maintenance activities. This approach
enhances efficiency and responsiveness in managing maintenance needs.

• Data processing and analytics algorithm development : Develops algorithms for real-time
machine monitoring using historical or virtual databases, involving steps like data cleaning,
feature extraction, and labeling for model generation.

• Data Cleaning : Eliminates irrelevant data and handles missing values, crucial for main-
taining accuracy during processing and analysis.

• Feature Extraction : Extracts features from data using techniques like time series analysis,
statistical parameters, frequency domain analysis, and wavelet transform.

• Labelling: Groups data based on similarities through clustering, considering preprocessing,
choice of clustering techniques, algorithm parameter selection, and performance evaluation.

• Model Building, Evaluation and Deployment : Develops classification models, selects ap-
propriate techniques, controls parameters, and evaluates performance before deploying for
real-time monitoring.

• Drift Analysis : dentifies distribution changes in signals, triggers necessary actions like
algorithm initialization or adaptive response upon abnormality detection.

• Human-centered AI : Utilizes AI tools for data processing and visualization, allowing hu-
mans to make informed decisions regarding abnormality responses.

• Adaptive response system : Responds to maintenance needs based on concept or data drift,
communicating with innate response systems and logging actions for future reference.

• Digital Twin : Utilizes advanced techniques like Digital Twin for real-time system moni-
toring and implementing necessary changes to system parameters.

Knowledge Base: To establish a smart maintenance system, it’s essential to build a com-
prehensive knowledge repository comprising data, algorithms, and libraries to facilitate Adaptive
maintenance. This entails harnessing Big Data technology for tasks like data injection, cloud stor-
age, processing, and retrieval. The key elements of this repository include a Historical Database
for storing sensor data, a Virtual Database for simulation data, Machine Learning Support Li-
braries for advanced algorithm development, and a log to record developed algorithms and their
corresponding responses.
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3 Pilot and Validation

3.1 Self-configuration Framework - Pilot and Validation

3.1.1 Pilot description

The implemented use case involves software development for the self-configuration of a specific
robotic platform. To demonstrate this, a simple product—a hinge—was selected. Hinges function
to join two parts, creating a revolute joint between them.

This example comprises four main components: pin, inferior leaf (part C), superior leaf (part
B), and a screw (part A). The objective of this assembly operation is to pick and place the
inferior leaf, superior leaf, and screw onto the pin. Following the screw placement, a screwing
operation is conducted. Refer to Fig. 6 for a 3D depiction of the parts and assembly process.

Figure 6: Sequential steps for the assembly of a hinge

3.1.2 Software implementation

The software implementation involved developing and integrating four Python scripts and a
JSON file representing the assembly process flow. JSON was chosen for its simplicity in handling
data. Other formats like AutomationML (AML) or Business to Manufacturing Markup Language
(B2MML) could enhance interoperability and process standardization. The FANUC Educational
cell (R-30iB Mate Plus Controller) is utilized robotic platform.

In this scenario, we presume that the Product Agent contains the JSON file (assembly process
flow). When it is launched it sends this information to the Configuration Agent which will extract
the parameters, tasks, and process steps. Also, it contains the Assembly templates which are
related to the Robotic platform being used. The Configuration Agent will provide relevant
configuration parameters to the Machine Agent. It has bidirectional communication with the
Robotic platform. In summary, the scripts implements have the following characteristics:
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• Extraction of Tasks, Process Steps, and Parameters: Extracts crucial parameters from the
recipe (JSON file).

• Assembly Templates: A set of functions representing pre-built sequences of steps.

• FANUC Robotic Framework: A script enabling connection and communication with the
robotic framework. In this instance, the ’fanucpy’ Python package for FANUC industrial
robots was employed [35, 36]. This driver has undergone testing in KAREL and FANUC
teach pendant languages. By establishing a connection with the robot controller server, it
allows easy access to control and monitoring variables. It comes with predefined functions
aiding in the movement, opening, and closing of the robotic platform’s gripper (FANUC
educational cell).

• Platform Integration: A script that integrates assembly parameters, templates, and com-
munication framework to execute robot movements.

Figure 7: Software implementation of the system

Compared to Fig. 3, in the current pilot use case we have not implemented the Collection
machine group nor the Machine Monitoring Agent. The use case is primarily focused on the
configuration of a single robotic platform. Reason for overlooking the choice of a machine with
optimum conditions.
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3.1.3 Results and discussion

Two JSON recipes were used to test the developed scripts: one for assembling the hinge and the
other for disassembling it. The disassembly recipe, especially, promotes practicality by enabling
reusability and recycling of products, allowing them to disassemble themselves.

Fig. 8.a illustrates the hinge assembly process, while Fig. 8.b depicts its disassembly post
self-configuration using the FANUC educational cell.

In contrast to other research that relies on predefined skill sets or centralized servers managing
parameters, this approach enables real-time self-configuration. This leads to significantly reduced
configuration time and effort during the launch of new products. As long as the manufacturing
resources possess the physical capabilities for an operation and access to templates, there’s a
considerable boost in production possibilities in terms of product variations.

Figure 8: Implementation of the self-configuration framework using the FANUC educational cell
in the (a) assembly and (b) disassembly of a hinge

3.2 Self-diagnosis and self-monitoring - Pilot and Validation

This section focuses on demonstrating the proposed framework for tool wear monitoring in a
CNC milling machine (Fig-5). It presents a partial implementation using machine learning, one
of the framework’s mentioned technologies. This implementation utilizes three public datasets
from the PHM 2010 Data Challenge.

The key aim here is to demonstrate the framework’s applicability in tool wear monitoring,
not to achieve the highest possible accuracy. As such, the implementation employs established
machine learning algorithms for their accessibility and widespread use.
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3.2.1 Pilot description

The workpiece was machined line-by-line, with the tool retracting between passes to complete
layers. Experiments used a CNC milling machine to machine a steel workpiece under various
parameters, collecting substantial sensor data. The process involved machining layers line-by-
line with flank wear measurements. Table 3 provides experimental details, including sensors,
equipment, and parameters, while Figure 9 illustrates sensor positions and wear measurements.

Figure 9: Experimental Setup ( Setup adapted from [37], the tool wear image used was captured
during an experimental campaign carried out at University of Nottingham )

3.2.2 Tool Wear Monitoring Framework

The tool wear monitoring system implements selected components of our proposed framework,
including the Physical Asset, Innate Maintenance, Adaptive Maintenance, and Knowledge Base
modules. While a full realization would incorporate every block in the immune-inspired smart
maintenance framework, this use case involves a limited subset. The adapted framework for this
tool wear monitoring application only includes chosen elements of the modules, as depicted in 10.
By focusing on key components like data acquisition, feature extraction, training classification
models, and predictive analytics, this case study demonstrates applying the core modules of the
framework to a targeted predictive maintenance scenario.
Physical Asset:The physical asset includes a 3-axis CNC milling machine equipped with various

motion control units like position sensors, rotary encoders, proximity switches, current sensors,
and pressure sensors. Additionally, three types of external sensors were added: a 3-axis dy-
namometer for cutting force measurement, three accelerometers for detecting vibrations in the
X, Y, and Z directions, and an Acoustic Emission (AE) sensor for monitoring stress waves from
the cutting process. The accelerometers and AE sensor were attached to the side of the work-
piece, while the dynamometer was positioned between the workpiece and the machining table.
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Table 3: Experimental Setup
Milling Machine Setup

CNC milling machine Röders Tech RFM760 (3-axis high speed)
Workpiece Flat stainless steel workpiece (HRC52)
Tool 6mm 3 flute cutter ball nose WC cutter

Machining Parameters
Number of Experiments 3
Spindle speed 23,600 rpm
cutting speed 4.7 m/min
Z-depth of cut (axial depth) 0.2 mm
Y-depth of cut (radial depth) 0.125 mm
Cutting time 15 s/pass
Pass length 108 mm
Number of passes/layer 252
Cutting distance 27,216 mm/layer
Number of layers 315

Sensors and Measurement Equipment
Tool wear measurement LEICA MZ12 microscope
Force Sensors Kistler 3-component platform dynamome-

ter
Vibration Sensors 3 Kistler piezo accelerometer
Acoustic Emission Sensor Kistler Acoustic emission sensor

Measurement parameters
sampling rate 50 kHz/channel
Number of signal channel 7 (Fx,Fy,Fz,V ibx,V iby,V ibz,AE)
Data size 3.2 GB/experiment

Figure 10: Tool Wear Monitoring Framework adapted from the immune-based smart maintenance
framework (The block faded in grey color are not used/developed for this use-case)
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The optimal sensor arrangement for this experiment was determined based on sensor perfor-
mance and their compatibility with data processing and analysis algorithms (Table-9). Sensor
outputs, such as cutting forces, are initially captured as charges, then converted to voltages via
charge amplifiers. This sensor data is stored in a historical database to refine data processing
and analytics algorithms and is also used for real-time monitoring of tool wear conditions.

Table 4: Sensor selection based on clustering data

Sensor
Clustering
Algorithm

Exp-1
Score*

Exp-2
Score*

Exp-3
Score*

Force, Vibration
& Acoustic Emission

Agglomerative 64.7 80.9 52.7
Birch 66.8 70.5 60.1

KMeans 45.4 76.0 60.2
Gaussian Mixture 55.4 28.4 65.9

Force and Vibration

Agglomerative 37.5 70.5 89.2
Birch 60.1 70.5 63.4

KMeans 46.4 81.1 60.2
Gaussian Mixture 59.3 56.3 61.5

Only Force

Agglomerative 66.4 47.9 63.4
Birch 81.6 75.5 75.1

KMeans 63.8 76.0 82.9
Gaussian Mixture 63.7 94.6 85.8

Only Vibration

Agglomerative 41.4 85.4 55.2
Birch 41.4 86.2 89.2

KMeans 41.4 99.3 55.2
Gaussian Mixture 28.1 54.4 17.7

Only Acoustic
Emission

Agglomerative 1.3 3.5 0.9
Birch 2.5 8.1 2.6

KMeans 1.7 3.5 0.9
Gaussian Mixture 0.8 3.8 0.6

The results presented here are considering RMS as Feature Selection
-Normalized mutual information score

Innate Maintenance:This module has three parts - to check the sensor data and to act based
on the tool wear. Only the ”Real-time monitoring” part was done in this case. The other two
parts are ideas for the future. The module has three parts:

• Real-time monitoring: This part uses a model to check the sensor data and detect the tool
wear. A model is a mathematical formula that can predict the tool wear based on the
sensor data. The sensor data is the information that the sensors collect from the machine,
such as the speed, the feed, the depth of cut, the temperature, the vibration, etc. The
model was made using one set of sensor data and tested using two other sets of sensor
data. The model works well, but there is a small delay and some data loss when it runs 11.
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Figure 11: Innate intelligence tool wear monitoring results (Online tool wear monitoring using
Logistic Regression model developed using exp-1 as historical data and tested using data from
(a) Exp-2 (b) Exp-3)

• Signal Context Awareness: This part makes sure that the model is suitable for the current
machine settings. The machine settings are the values that control how the machine op-
erates, such as the speed, the feed, the depth of cut, etc. If the machine settings change
a lot, the model might not work well anymore. For example, if the speed is much lower,
the tool wear might be different. In that case, this part makes a new model using the old
or simulated data for the new machine settings. The old data is the sensor data that was
collected before. The simulated data is the sensor data that was generated by a computer
program. The new model replaces the old model in real-time monitoring.

• Innate Response system:This part of the module has different ways of dealing with severe
tool wear. Severe tool wear is when the tool is very worn out or damaged from cutting
the material. This can make the product worse or the machine unsafe. Depending on
the situation, this part can do one of these things: warn the operator with a signal or a
message, change the machine settings like speed, feed, or depth of cut, control the coolant
that cools the tool or the material, or stop the machine to avoid more damage.

Adaptive Maintenance: Adaptive maintenance is a set of steps for creating and using machine
learning models. Machine learning models are formulas that can learn from data and make
predictions. Figure 12 shows the different steps of making and testing the formulas. The data is
the information that comes from the sensors on the machine. The data does not have labels, which
are the answers that the formulas need to learn. The current case focuses on the data preparation
step, which is making the data ready for the formulas. This step uses a semi-automatic labeling
technique, which is a way of giving labels to the data with some human help.

• Data Cleaning: The process begins by filtering out noise through a joint time-frequency
distribution algorithm. Subsequently, signals associated with non-cutting activities are ex-
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Figure 12: Data processing and analytics algorithm development

cluded by discarding data that exhibits forces below 5 Newtons. The outcomes of removing
these non-cutting signals are detailed in Table-5.

• Feature Extraction: The data is a series of numbers that change over time. The data shows
how the tool wears out when it cuts 315 layers of material. Each layer has about 220,000
numbers in the data. Using one number to summarize so many numbers might not be
accurate. So, each layer of data was split into smaller parts of 5000 numbers each. Then,
one number was calculated for each part. The number was based on some math formulas
that describe the data, such as the root mean square, the peak value, and the average.
These formulas are called statistical parameters. Many studies have used these formulas
to get good numbers for predicting tool wear [38]. Table-8 shows how different formulas
affect the prediction.

• Clustering: The data has 7 variables that are important for grouping the data. The data
was prepared by changing the values of the variables to be between 0 and 1. This is called
feature scaling. Then, 4 methods were used to group the data into 3 groups. The methods
are called Agglomerative, Birch, KMeans, and Gaussian Mixture. There are different ways
of finding the best groups for the data. The groups are based on the information in the
knowledge base. The knowledge base is a collection of facts and rules about the data. The
best method for grouping the data was selected and used for the next steps. The number
of groups was 3 because the tool has 3 stages of wear. The stages are break-in, steady
wear, and severe wear. They show how the tool changes over time. Table 7 and Figure 14
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have more details about the data and the groups.

• Labelling: The data was grouped into 3 clusters based on tool wear. The first time the
third cluster appeared was at the start of severe wear. The data before that was called
less severe wear (Value 0) and the data after that was called severe wear (Value 1). The
tool wear was also checked after each layer by looking at the three edges of the tool. The
highest wear value of the three edges was the tool wear (Vb) (Figure 14). The change in
the angle of the wear was used to find the stages of the wear. To see how well the grouping
worked, the wear was used as the true value. The wear was split into two groups: less
severe wear and severe wear. The break-in group was not useful for the operator. Figure
13 shows the estimated severe wear and the true severe wear. The goal of the grouping was
to make the estimated severe wear close to the true severe wear. A score called normalized
mutual information could also be used to compare the true and estimated severe wear for
each grouping method. This could help in choosing the best variables (Table 8) and sensors
(Table 9) for the data.

• Model Building, Evaluation, and Deployment:The data was split into two groups based on
the tool wear. A model was made to guess the tool wear group from the data. A model is
a formula that can learn from the data and make predictions. Five different methods were
used to make the model. The methods are called Logistic Regression, Multinominal Naive
Bayes, Linear Support Vector, K-nearest Neighbors, and Decision Tree. There are different
ways of finding the best formula for the data. The data was based on the information in
the knowledge base. The knowledge base is a collection of facts and rules about the data.
The best model was used for the next steps. The data came from three similar tests. The
model was trained with one test data and tested with the other two test data. The model
was scored based on how well it guessed the tool wear group. The scores were used to pick
the best model (Table 10).

Table 5: Effect of filtering non-cutting signals

Clustering
Algorithm

7 input variable Only force variable
Raw Score⋆ Filtered Score⋆ Raw Score⋆ Filtered Score⋆

Agglomerative 53.9 95.5 64.3 64.9
Birch 56.5 80.1 62.9 83.2

KMeans 56.5 55.2 71.8 82.3
Gaussian Mixture 10.2 23.4 84.1 81.7
Note: The results presented here are considering peak value feature extraction

Experiment-3 data were used

Similar results could be found for other feature extractions/experiments)

⋆-Normalized mutual information score

Knowledge Base:The sensor data comes from the machine that is being monitored. The
knowledge base also has some machine learning algorithms and other tools that are needed to
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Figure 13: Semi-auto labelling of the peak values of each cut for Experiment-1

Figure 14: Flank wear on 3-flutes showing the three stages tool wear - break-in, steady and
severe wear (results for measurement carried out for Exp-2)
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Table 6: Feature selection based on Clustering data

Features
Clustering
Algorithm

Exp-1
Score*

Exp-2
Score*

Exp-3
Score*

Average ±SD‡

Peak Value

Agglomerative 39.6 49.5 95.5 61.5± 24.3
Birch 39.6 63.2 80.1 61.0± 16.6

KMeans 44.3 70.5 55.3 56.7± 10.7
Gaussian Mixture 11.9 23.2 23.4 19.5± 5.4

Mean Value

Agglomerative 61.9 66.4 65.0 64.4± 1.9
Birch 67.6 54.4 54.0 58.6± 6.3

KMeans 70.1 57.0 76.2 67.8± 8.0
Gaussian Mixture 61.9 49.5 76.5 62.6± 11.0

Root Mean Square
(RMS)

Agglomerative 64.7 80.9 52.7 66.1± 11.6
Birch 66.8 70.5 60.1 65.8± 4.3

KMeans 45.4 76.0 60.2 60.5± 12.5
Gaussian Mixture 55.4 28.4 65.9 49.9± 15.8

Note: The results presented here are considering all 7 input variables

(Fx,Fy ,Fz ,V ibx,V iby ,V ibz ,AE)

⋆-Normalized mutual information score ‡-Standard Deviation

Table 7: Clustering input variables and parameters
Input Variable

Cutting force in the X-dimension Fx (N)
Cutting force in the Y-dimension Fy (N)
Cutting force in the Z-dimension Fz (N)
Vibration in the X-dimension V ibx (g)
Vibration in the Y-dimension V iby (g)
Vibration in the Z-dimension V ibz (g)
Acoustic Emission AE (V)

Number of training set
Experiment-1 13847
Experiment-2 14065
Experiment-3 13812
Number of Clusters 3
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Table 8: Feature selection based on Clustering data

Features
Clustering
Algorithm

Exp-1
Score*

Exp-2
Score*

Exp-3
Score*

Average ±SD‡

Peak Value

Agglomerative 39.6 49.5 95.5 61.5± 24.3
Birch 39.6 63.2 80.1 61.0± 16.6

KMeans 44.3 70.5 55.3 56.7± 10.7
Gaussian Mixture 11.9 23.2 23.4 19.5± 5.4

Mean Value

Agglomerative 61.9 66.4 65.0 64.4± 1.9
Birch 67.6 54.4 54.0 58.6± 6.3

KMeans 70.1 57.0 76.2 67.8± 8.0
Gaussian Mixture 61.9 49.5 76.5 62.6± 11.0

Root Mean Square
(RMS)

Agglomerative 64.7 80.9 52.7 66.1± 11.6
Birch 66.8 70.5 60.1 65.8± 4.3

KMeans 45.4 76.0 60.2 60.5± 12.5
Gaussian Mixture 55.4 28.4 65.9 49.9± 15.8

Note: The results presented here are considering all 7 input variables

(Fx,Fy ,Fz ,V ibx,V iby ,V ibz ,AE)

⋆-Normalized mutual information score ‡-Standard Deviation
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Table 9: Sensor selection based on clustering data

Sensor
Clustering
Algorithm

Exp-1
Score*

Exp-2
Score*

Exp-3
Score*

Force, Vibration
& Acoustic Emission

Agglomerative 64.7 80.9 52.7
Birch 66.8 70.5 60.1

KMeans 45.4 76.0 60.2
Gaussian Mixture 55.4 28.4 65.9

Force and Vibration

Agglomerative 37.5 70.5 89.2
Birch 60.1 70.5 63.4

KMeans 46.4 81.1 60.2
Gaussian Mixture 59.3 56.3 61.5

Only Force

Agglomerative 66.4 47.9 63.4
Birch 81.6 75.5 75.1

KMeans 63.8 76.0 82.9
Gaussian Mixture 63.7 94.6 85.8

Only Vibration

Agglomerative 41.4 85.4 55.2
Birch 41.4 86.2 89.2

KMeans 41.4 99.3 55.2
Gaussian Mixture 28.1 54.4 17.7

Only Acoustic
Emission

Agglomerative 1.3 3.5 0.9
Birch 2.5 8.1 2.6

KMeans 1.7 3.5 0.9
Gaussian Mixture 0.8 3.8 0.6

The results presented here are considering RMS as Feature Selection
-Normalized mutual information score

Table 10: Classification model score for various algorithms

Classification
Algorithm

Exp-1 Training set Exp-2 Training set Exp-3 Training set
Average ± SD‡Exp-2

Test score*
Exp-3

Test score*
Exp-1

Test score*
Exp-3

Test score*
Exp-1

Test score*
Exp-2

Test score*
Logistic Regression 88.44 93.78 76.46 95.82 90.34 91.78 89.44± 6.3

Multinominal Naive Bayes 71.53 71.84 78.80 71.84 78.80 71.53 74.06± 3.4
Linear Support Vector 71.53 71.84 78.80 71.84 78.60 93.55 77.69± 7.7
k-nearest neighbors 68.39 66.60 78.41 94.40 90.72 92.09 81.77± 11.3

Decision Tree 73.96 81.15 76.33 93.32 86.47 92.69 83.99± 7.5

Note: The results presented here are considering RMS as feature selection and using Birch clustering

⋆-Normalized mutual information score ‡-Standard Deviation
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make and test the formulas for the data. The formulas are called data processing and analytics
algorithms. They are used to understand and predict the tool wear.

3.2.3 Discussion

Our tool wear monitoring framework adapts key aspects of the proposed immune-inspired smart
maintenance system by utilizing machine learning. Leveraging sensor data from the historical
database, data processing, and analytics algorithms are developed.

Standard machine learning libraries accessed from the knowledge base guide data preparation.
After cleaning non-cutting signals, the root mean square is extracted as the key feature. Birch
clustering provides ideal labeling before training classification models. Logistic regression is
chosen as the most accurate model for real-time monitoring.

For online monitoring, the analytics algorithm classifies and labels incoming sensor data to
predict tool wear. The context awareness module analyzes the classification outputs, triggering
tool changes when needed. Model accuracy is constantly tracked, and any major deviations
trigger the re-development of the algorithm by the adaptive maintenance system. By considering
updated data and advanced methods, it develops a more accurate and resilient model before
accuracy deteriorates severely.

This use case attempts to demonstrate a smart maintenance framework incorporating re-
silience and anti-fragility by synergizing innate and adaptive capabilities. The system adapts to
changes through context-aware, needs-based model refinement.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-31-



DiManD Deliverable D5.5

4 Conclusion

This report introduces two innovative frameworks for manufacturing: a smart maintenance
framework inspired by the human immune system and a manufacturing self-configuration frame-
work. The smart maintenance framework integrates immune system characteristics with emerg-
ing technologies for comprehensive maintenance management. Pilot cases, like tool condition
monitoring of a CNC milling machine, demonstrate its practicality. Future research will explore
additional technologies like cloud computing and validate the framework across various scenarios.

Similarly, the manufacturing self-configuration framework streamlines robotic platform oper-
ation, eliminating the need for task-specific programming. Pilot cases, such as hinge assembly
and disassembly, show its effectiveness. Future efforts will expand capabilities and integrate
complementary technologies to maximize utility in manufacturing. These frameworks mark sig-
nificant advancements in smart manufacturing, enhancing efficiency and adaptability in industrial
processes.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-32-



DiManD Deliverable D5.5

References

[1] Hamood Ur Rehman et al. “A Framework for Self-configuration in Manufacturing Produc-
tion Systems”. In: Doctoral Conference on Computing, Electrical and Industrial Systems.
Springer. 2021, pp. 71–79.

[2] Stefan Scheifele et al. “Flexible, self-configuring control system for a modular production
system”. In: Procedia Technology 15 (2014), pp. 398–405.

[3] Hao Tang et al. “CASOA: an architecture for agent-based manufacturing system in the
context of industry 4.0”. In: IEEE Access 6 (2017), pp. 12746–12754.

[4] Mauro Onori et al. “The IDEAS project: plug & produce at shop-floor level”. In: Assembly
automation (2012).

[5] Regina Frei and Giovanna Di Marzo Serugendo. “Self-organizing assembly systems”. In:
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
41.6 (2011), pp. 885–897.

[6] George Rzevski et al. “Ontology-driven multi-agent engine for real time adaptive schedul-
ing”. In: 2018 International Conference on Control, Artificial Intelligence, Robotics & Op-
timization (ICCAIRO). IEEE. 2018, pp. 14–22.

[7] Andre Dionisio Rocha et al. “Agent-based plug and produce cyber-physical production
system–test case”. In: 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN). Vol. 1. IEEE. 2019, pp. 1545–1551.

[8] Yingfeng Zhang et al. “Agent and cyber-physical system based self-organizing and self-
adaptive intelligent shopfloor”. In: IEEE Transactions on Industrial Informatics 13.2 (2016),
pp. 737–747.

[9] Duncan McFarlane et al. “The intelligent product in manufacturing control and manage-
ment”. In: IFAC Proceedings Volumes 35.1 (2002), pp. 49–54.

[10] KUKA. “Matrix production: an example for Industrie 4.0”. In: (2019).

[11] Terrin Pulikottil, Luis A Estrada-Jimenez, and Jose Barata. “Conceptual framework for
smart maintenance based on distributed intelligence”. In: IFAC-PapersOnLine 55.19 (2022),
pp. 121–126.

[12] CA Laurentys et al. “Design of an artificial immune system for fault detection: a negative
selection approach”. In: Expert Systems with Applications 37.7 (2010), pp. 5507–5513.

[13] CA Laurentys, Reinaldo M Palhares, and Walmir M Caminhas. “A novel artificial immune
system for fault behavior detection”. In: Expert Systems with Applications 38.6 (2011),
pp. 6957–6966.

[14] Mariana Araujo, Jose Aguilar, and Hugo Aponte. “Fault detection system in gas lift well
based on artificial immune system”. In: Proceedings of the International Joint Conference
on Neural Networks, 2003. Vol. 3. IEEE. 2003, pp. 1673–1677.

[15] Balaje T Thumati, Gary R Halligan, and Sarangapani Jagannathan. “A novel fault diag-
nostics and prediction scheme using a nonlinear observer with artificial immune system
as an online approximator”. In: IEEE Transactions on Control Systems Technology 21.3
(2012), pp. 569–578.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-33-



DiManD Deliverable D5.5

[16] Bo Chen. “Agent-based artificial immune system approach for adaptive damage detection
in monitoring networks”. In: Journal of Network and Computer Applications 33.6 (2010),
pp. 633–645.

[17] Yiyang Dai and Jinsong Zhao. “Fault diagnosis of batch chemical processes using a dy-
namic time warping (DTW)-based artificial immune system”. In: Industrial & Engineering
Chemistry Research 50.8 (2011), pp. 4534–4544.

[18] CA Laurentys, Reinaldo M Palhares, and Walmir M Caminhas. “Design of an artificial
immune system based on danger model for fault detection”. In: Expert Systems with Ap-
plications 37.7 (2010), pp. 5145–5152.

[19] Shyh-Jier Huang. “Application of immune-based optimization method for fault-section
estimation in a distribution system”. In: IEEE transactions on power delivery 17.3 (2002),
pp. 779–784.

[20] Daryl W Bradley and Andrew M Tyrrell. “Immunotronics: Hardware fault tolerance in-
spired by the immune system”. In: International Conference on Evolvable Systems. Springer.
2000, pp. 11–20.

[21] Ilhan Aydin, Mehmet Karakose, and Erhan Akin. “An adaptive artificial immune system
for fault classification”. In: Journal of Intelligent Manufacturing 23.5 (2012), pp. 1489–
1499.

[22] Z Chilengue, JA Dente, and PJ Costa Branco. “An artificial immune system approach for
fault detection in the stator and rotor circuits of induction machines”. In: Electric power
systems research 81.1 (2011), pp. 158–169.

[23] Kaushik Ghosh and Rajagopalan Srinivasan. “Immune-system-inspired approach to pro-
cess monitoring and fault diagnosis”. In: Industrial & engineering chemistry research 50.3
(2011), pp. 1637–1651.

[24] Esmaeil Alizadeh, Nader Meskin, and Khashayar Khorasani. “A dendritic cell immune
system inspired scheme for sensor fault detection and isolation of wind turbines”. In: IEEE
Transactions on Industrial Informatics 14.2 (2017), pp. 545–555.

[25] Anam Abid, Muhammad Tahir Khan, and Muhammad Salman Khan. “Multidomain features-
based GA optimized artificial immune system for bearing fault detection”. In: IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems 50.1 (2017), pp. 348–359.

[26] Esmaeil Alizadeh, Nader Meskin, and Khashayar Khorasani. “A negative selection immune
system inspired methodology for fault diagnosis of wind turbines”. In: IEEE transactions
on cybernetics 47.11 (2016), pp. 3799–3813.

[27] Veit Hammerstingl and Gunther Reinhart. Skills in Assembly. Version 1.1. 2018.

[28] Philipp Dettmer. Immune - A journey into the mysterious system that keeps you alive.
1st ed. Carmelite House, 50 Victoria Embankment, London EC4Y 0DZ: Hodder & Stoughton
Ltd, 2021.

[29] Leandro N de Castro and Jon Timmis. “Artificial immune systems: a novel approach to
pattern recognition”. In: Kent Academic Repository (2002).

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-34-



DiManD Deliverable D5.5

[30] R Deaton et al. “A DNA based artificial immune system for self-nonself discrimination”. In:
1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational
Cybernetics and Simulation. Vol. 1. IEEE. 1997, pp. 862–866.

[31] Stephanie Forrest et al. “Self-nonself discrimination in a computer”. In: Proceedings of
1994 IEEE computer society symposium on research in security and privacy. Ieee. 1994,
pp. 202–212.

[32] Leandro Nunes De Castro. Fundamentals of natural computing: basic concepts, algorithms,
and applications. Chapman and Hall/CRC, 2006.

[33] Niels Kaj Jerne. “The immune system”. In: Scientific American 229.1 (1973), pp. 52–63.

[34] Yanfei Zhong et al. “An unsupervised artificial immune classifier for multi/hyperspectral
remote sensing imagery”. In: IEEE Transactions on Geoscience and Remote Sensing 44.2
(2006), pp. 420–431.

[35] Agajan Torayeff. fanucpy: Python package for FANUC industrial robots. Version 0.1.5.
2022.

[36] Agajan Torayev et al. “Towards Modular and Plug-and-Produce Manufacturing Apps”. In:
(2022).

[37] Giovanna Mart́ınez-Arellano, German Terrazas, and Svetan Ratchev. “Tool wear classi-
fication using time series imaging and deep learning”. In: The International Journal of
Advanced Manufacturing Technology 104.9 (2019), pp. 3647–3662.

[38] Dazhong Wu et al. “A comparative study on machine learning algorithms for smart manu-
facturing: tool wear prediction using random forests”. In: Journal of Manufacturing Science
and Engineering 139.7 (2017).

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-35-


	Introduction
	Self-configuration in manufacturing
	Manufacturing self-configuration - Definition
	Refined stated of the art and Gap analysis
	Contribution of the current framework

	Self-diagnosis and self-monitoring in manufacturing
	Smart Maintenance
	Smart Maintenance based on the Immune System - Gap analysis


	Developed Frameworks
	Self-configuration Framework
	Vision and Assumptions
	Multi-agent based representation
	Process flow representation (Product Agent)
	Multi-agent based negotiation

	Self-diagnosis and self-monitoring Framework
	Immune system holistic view
	Immune system and emerging technologies
	Immune system-based Smart Maintenance Framework


	Pilot and Validation
	Self-configuration Framework - Pilot and Validation
	Pilot description
	Software implementation
	Results and discussion

	Self-diagnosis and self-monitoring - Pilot and Validation
	Pilot description
	Tool Wear Monitoring Framework
	Discussion


	Conclusion

