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Summary

This deliverable is centered on the development and deployment of a cloud-based service based
on the architecture and requirements described in deliverable 3.3, with a specific focus on the
implementation of a self-diagnosis service. This service is designed to continuously monitor, ana-
lyze, and detect potential faults or anomalies in real-time, facilitating predictive maintenance to
minimize downtime effectively. The methodology employed involves a comprehensive mapping
of the system components onto the established architecture, coupled with a thorough analysis
of the predefined requirements for the self-diagnosis service. The OptiTwin project serves as
a demonstrator, aligning seamlessly with the proposed architecture and providing valuable in-
sights for future implementations. It is expected that the mapping process of the demonstrator
contribute to the advancement of digital manufacturing and design practices.
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Foreword

DiManD aims to develop a high-quality multidisciplinary, multi-professional and cross-sectorial
research and training framework for Europe. The purpose is to improve Europe’s industrial com-
petitiveness by designing and implementing an integrated programme in the area of intelligent
informatics driven manufacturing, which will form the benchmark for training future Industry
4.0 practitioners. This will be done in compliance with the industrial requirements such revolu-
tionary production systems will pose, and in particular this deliverable will provide a real-world
demonstrator of one cloud-based service as described in the previous deliverable.

1 Introduction

In the modern industrial landscape, cyber-physical systems (CPSs) stand as a pivotal technolog-
ical framework that integrates physical elements with advanced computing and communication
technologies. This integration enables enterprises to increase their automation levels, enhance
efficiency, and improve system adaptability to sudden changes [1, 2, 3]. Despite the poten-
tial CPSs show to reshape current and future industry practices, their integration into existing
manufacturing environments still necessitates additional, proper guidance [4].

In the context of an increasingly globalized manufacturing landscape, the concept of customer-
oriented manufacturing emerges as promising to elevate service quality and competitiveness,
particularly for small and medium-sized enterprises (SMEs). Consequently, a new concept in the
realm of advanced manufacturing, cloud manufacturing, has obtained global attention, which
revolves around deploying CPS within a cloud computing environment [5]. Cloud computing
is a model for enabling overall, convenient and on-demand network access to a shared pool of
configurable computing resources (e.g. networks, servers, storage, applications, and services)
that can be rapidly offered and released with minimal management effort or service provider
interactions [6, 7].

Within the framework of the DiManD project, this deliverable (D3.4) represents a demon-
strator of a cloud-based self-diagnosis service that adheres to the architecture and requirements
previously proposed in the deliverable of this work package (D3.3 Guide to develop and
deploy CPS resources). Thus, the main objective of this deliverable is to develop and deploy
such a service, as a key component of the continuous improvement of machining processes. This
service aims to monitor, analyze, and promptly detect potential faults in real-time, with the
ultimate goal of enabling predictive maintenance to minimize downtime effectively.

To this end, this deliverable makes use of OptiTwin [8], a parallel project funded by the
Provincial Council of Gipuzkoa, Spain, as demonstrator of self-diagnosis systems, aligning seam-
lessly with the proposed architecture. OptiTwin provides a tool condition monitoring (TCM)
system based on machine learning (ML) and deep learning (DL) tool-wear prediction services. It
is comprised of sub-systems (components) deployed in the machining laboratory of MGEP (asset
and edge layers), as well as in the cloud.

This deliverable details the methodology, demonstrator, architecture mapping, and require-
ments fulfillment but also sets a blueprint for future developments. The planned integration of a
fog layer, enhanced real-time capabilities, and the system’s adaptability underscore its dynamic
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nature. As digital manufacturing continues to evolve, this deliverable reflects the ongoing pursuit
of innovation and efficiency within the DiManD project.

The rest of this document is structured as follows. Section 2 describes the background con-
cepts of machining and TCM, as well as related work. Section 3 presents the methodology
(outlined in Subsection 3.1), which focuses on the comprehensive mapping of specific system
features onto the established architecture, following a meticulous analysis of requirements. Sub-
sequently, Subsection 3.2 describes the demonstrator, i.e., the OptiTwin project, as well as its
components.

Section 4 maps the architecture of OptiTwin and its components with the proposed archi-
tecture of D3.3. This mapping underscores the capacity of the system for real-time TCM and
tool wear prediction, showcasing its ability to capture, analyze, and deploy predictive models for
optimized machining processes. Thereafter, Section 5 presents the requirements mapping, offer-
ing a comprehensive overview of the self-diagnosis requirements fulfilled by OptiTwin across the
categories detailed in D3.3, i.e., connectivity, data managing, monitoring and analysis, planning,
execution, and knowledge. Finally, Section 6 presents a discussion on the mappings, Section 7 as
insights for future implementations, and Section 8 presents the conclusions of this deliverable.
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2 Background

Machining is a cost-effective manufacturing process that produces high-precision parts with high-
quality surface finishes. However, maintaining optimal machining conditions requires continuous
monitoring of various parameters, such as force, noise, temperature, and vibrations, to identify
tool wear that could lead to damaged parts and process disruptions [9]. Thus, accurate mon-
itoring and prediction of tool wear stages, including initial, gradual, and failure wear stages,
and remaining tool life are crucial in machining [10]. This has led to the development of TCM
systems based on tool wear that aim to identify the appropriate time to replace cutting tools.

The TCM prediction cycle in machining processes, as depicted in Figure 1, is a continuous
process that begins with the acquisition of signals from the machining process using various
sensors. These signals are transmitted to a work station, where they are processed and analyzed
to extract relevant features. Both the raw signals and the extracted features can be used to
train predictive models, usually hosted in the cloud. These models, developed on datasets of
historical data, predict the wear state or remaining useful life (RUL) of the tool. As the ma-
chining process progresses, the models are updated with new sensor data to improve prediction
performance. Predicted tool wear states and RUL inform decision-making regarding machining
process parameters, such as tool replacement or adjustment of processing conditions.

X: -50
Y: 60
Z: 100
VC: 100%

Tool 
wear: 
0.1μm

Figure 1: Tool wear prediction cycle in machining processes.

Several TCM systems based on artificial intelligence (AI) algorithms have been proposed and
reviewed in literature. The algorithms implemented are usually based on machine learning (ML)
or deep learning (DL) algorithms. For turning and drilling operations, TCM systems based
on ML algorithms, e.g., decision trees, have been highlighted as effective approaches. For more
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complex processes, such as milling, more advanced algorithms, like ensembles and DL algorithms
have been recommended [11].

Sofuoğlu et al. [12] developed models for turning using artificial neural networks, decision
trees, and support vector machine models, with the decision trees showing superior prediction
results. Bustillo et al. [13] compared various ML algorithms for turning, such as regression
trees, artificial neural networks (ANNs), and ensembles. The study found that artificial neural
networks had the highest accuracy but required complex tuning processes. On the other hand,
ensembles such as random forest provided similar accuracy without tuning.

For milling, Cheng et al. [14] proposed a framework, which uses feature normalization and an
attention mechanism for pre-processing. Then, a parallel convolutional neural network (CNN)
followed by bi-directional long short term memory (BiLSTM) are used for TCM, and a dense
residual neural network (ResNetD) is used for short-term and long-term tool wear prediction.
Mart́ınez-Arellano et al [15] presented a big data approach for TCM that uses Gramian angular
summation fields for signal imaging and a convolutional neural network (CNN) deep learning
architecture for tool wear classification, working directly with the signal images and avoiding
statistical pre-processing or filtering. Finally, Sun et al. [16] integrated a LSTM network for
forecasting multiple flank wear values based on historical data, and a ResNet for real-time TCM
using raw signals.

Despite significant advancements, AI-based TCM have not yet fully reached technology readi-
ness level (TRL) 9, indicating a lack of readiness for industrial applications. To achieve this level,
three key factors need to be addressed: (i) Selection of key sensor signals captured from physi-
cal assets, (ii) efficient signals processing and analysis, and (iii) development of high-performing
predictive models [17]. Relying on individual sensor signals can produce low quality process infor-
mation. To address this, combining multiple sensor signals (sensor fusion) allows for monitoring
various aspects of the process and enhances the effectiveness of TCM systems. Additionally,
employing minimal and automated signal processing techniques and training AI models with
diverse cutting conditions ensures adaptability to changing circumstances, reducing the gap be-
tween research and industrial applications [18].
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3 Methods

The primary objective of this deliverable within the DiManD project was to develop and deploy
a cloud-based service within the established system environment and architecture formulated in
the preceding deliverable. The chosen focus was the implementation of the self-diagnosis service,
extensively discussed in D3.3. This service aims to continuously monitor, analyze, and detect
potential faults or anomalies in real-time, enabling predictive maintenance to effectively minimize
downtime.

In order to fulfill the deployment of this service, the OptiTwin project [8] was used as demon-
strator. A comprehensive mapping was conducted, associating specific system features of the
demonstrator onto different components of the architecture presented in D3.3. Additionally, a
thorough analysis of the predefined requirements for the self-diagnosis service was undertaken.
The following subsections detail the methodology followed to map the architectures and require-
ments and describe the OptiTwin project.

3.1 Methodology

The activities within this deliverable focused on the goals set in D3.3. Establishing a suitable
demonstrator for the cloud-based self-diagnosis service needed a comprehensive evaluation to
determine the alignment of the demonstrator with the architecture proposed in D3.3, depicted in
Figure 2. The D3.3 architecture includes 4 layers: (i) assets layer, (ii) edge layer, (iii) fog layer,
and (iv) cloud layer. In addition, the interaction between the layers and the self-diagnosis services
are also depicted in the architecture. Additionally, the focus included a thorough analysis of the
requirements, also described in D3.3, to establish which were fulfilled by the demonstrator. The
full description of the system employed as a demonstrator for our implementation is provided in
the following subsection.

The methodology followed in this deliverable was composed of two stages: (i) map the archi-
tectures and (ii) analyse the fulfilment of requirements. To map the architectures, several steps
were followed. The equipment components were checked and data exchange flows and storage
systems were identified. Thereafter, physical and digital connections between elements were de-
termined and, finally, the elements of the demonstrator were mapped to the D3.3 architecture.
This analysis can be seen in Section 4.

The requirements criteria list established in D3.3 was used to analyze and select the re-
quirements fulfilled by the demonstrator based on its capabilities, as well as to highlight any
requirements that were missed. As additional information, annotations were included for the re-
quirements that were planned to be added in future improvements of the system. This mapping
can be seen in Section 5

The mapping of the architecture and analysis of the fulfillment of requirements provided
insights into the operational aspects of implementing self-diagnosis services. This case study not
only presented a demonstrative model but also demonstrated the feasibility of integrating self-
configuration services within a similar framework. Moreover, this assessment highlighted areas
that require improvement, modification, or inclusion to achieve a fully functional cloud-based
service configuration.
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Figure 2: Architecture proposed in Deliverable 3.3.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-7-



DiManD Deliverable D3.4

3.2 Demonstrator - OptiTwin

The system used as demonstrator for the methodology presented in the previous subsection is
a result of the OptiTwin project. OptiTwin is a project funded by the Provincial Council of
Gipuzkoa (Department of Economic Promotion, Rural Environment and Territorial Balance) in
the 2020 call of the “Support Program for the Gipuzkoan Network of Science, Technology and
Innovation”. OptiTwin is situated within the field of digital manufacturing and has the objec-
tive of developing data-based models aimed at optimizing digital twins for machining processes.
In particular, OptiTwin has focused on signal acquisition and analysis, as well as tool wear
prediction.

OptiTwin is the result of the collaboration of three research groups: (i) high-performance
machining 1, (ii) software and systems engineering 2, and (iii) data analysis and cybersecurity 3.
All these groups, belonging to the Higher Polytechnic School of Mondragon Unibertsitatea, have
collaborated on the project focused on implementing machine learning models in the industrial
environment. This has been done by integrating the cloud-based system into a computerized
numerical controlled (CNC) machining center. The workflow of OptiTwin is presented in Figure
3 and involves three components:

Figure 3: OptiTwin workflow.

• CNC machining center: This component is a LAGUN GVC 1000 CNC machining center
equipped with a Fagor CNC. It includes the software of the CNC and the experiment
designer of OptiTwin. OptiTwin extracts signals from the process via the API of the

1http://www.mondragon.edu/mar
2http://www.mondragon.edu/ingsw
3http://www.mondragon.edu/danz
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CNC and sends this data to the laboratory workstation, together with the experiment
definition data. In addition, the tool wear obtained from the OptiTwin tool wear prediction
services in the cloud server is displayed on the OptiTwin screen. In addition, condition
ranges, such as tool position and cutting speed, are configured in this component to identify
when to perform process diagnosis. Figure 4 illustrates the graphical user interface (GUI) of
the OptiTwin experiment designer with two images: (Figure 4a) experiment definition and
(Figure 4b) ongoing experiment tool wear prediction. The experiment definition screen
includes fields to record process data, cutting conditions, and tool data. The ongoing
experiment tool wear prediction presents the status of the connection to the laboratory
workstation in the panels, followed by the selection of only collecting data or collecting
data and predicting tool wear. The bottom right panel displays if there is connection to
the CNC, if data is being transmitted, and if range conditions are met for predicting tool
wear. In case range conditions are met, tool wear is displayed in real time in this panel.
Finally, in the bottom left panel, an alert is displayed in case the tool needs to be changed
due to its wear.

• Laboratory workstation (edge): This component is a workstation in the edge of the
network that hosts the OptiTwin experiment manager software, which records and stores
the signals sent by the experiment designer of OptiTwin hosted in the CNC machining
center. The workstation analyses the received signals and processes the data to extract
key performance indicators (KPIs). These, and the complete process data, are sent in real
time to the cloud server for storage and, if the condition ranges are met, to predict tool
wear with the ML and DL models. Tool wear is received back from the cloud and sent to the
CNC to be displayed on screen. Figure 5 illustrates the GUI of the OptiTwin experiment
manager, where the process data is stored and can be queried. In this screen, the historical
experiments can be selected, and the experiment definition data for the selected one is
displayed in the right panel.

• Cloud server: This component is a cloud server where ML and DL models for tool
wear predictions are hosted and historical process data is stored to retrain models or to
further investigate additional aspects of the process, such as chatter or surface roughness.
Process KPIs and raw data are received from the laboratory workstation and stored in
databases. In addition, KPIs and process signals are processed by the ML and DL models
for tool wear predictions. The predicted tool wear is sent back to the workstation and then
forwarded to the CNC machining center. Tool wear prediction is performed based on
the complexity of the machining process type. For drilling processes, which form simple
circular shapes, a decision tree model is used, which receives the KPIs as input for the
predictions. For milling processes, which form complex and varied shapes, an advanced
DL ensemble is used, which uses the pre-processed signals as input for the predictions. In
addition, the cloud server includes a dashboard for querying and displaying historical data
from the CNC machining centre.

Based on the description of the OptiTwin project, it was determined that the system aligns
with the architecture proposed and described in D3.3. Therefore, the mapping of the architecture
and the fulfillment of requirements are detailed in following sections, as well as a discussion of
the results.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-9-



DiManD Deliverable D3.4

(a) Experiment definition.

(b) Tool wear prediction of ongoing experiment.

Figure 4: OptiTwin experiment designer hosted in the CNC machining center.
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Figure 5: OptiTwin experiment manager hosted in the edge.
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4 Architecture mapping

This section presents a description of the architecture of the OptiTwin demonstrator, a real-time
monitoring system developed for optimizing machining processes. The architecture is mapped
to the previous architecture proposed in D3.3, highlighting the alignment of the components and
services provided by OptiTwin.

Figure 6 presents the mapping of the architecture of the OptiTwin demonstrator to the
architecture proposed in D3.3. The components outlined in Section 3 are marked in the figure
using the same color scheme used in Figure 3. The components and service provided by OptiTwin
are mapped as follows:

• Assets layer: There is one main asset in the OptiTwin demonstrator, a Lagun GVC 1000
CNC machining center with a Fagor CNC controller. The CNC measures several signals
from the machine via a CNC API. The signals measured include:

– the real RPM

– position of the spindle (S) in degrees

– position of the spindle in the X, Y and Z axes in mm

– RMS current feedback and active power of the spindle (S)

– RMS current feedback and active power of the X, Y and Z axes motors

– torque feedback in the X, Y and Z axes

The signals measured are acquired from the CNC API by the OptiTwin experiment designer
and are transmitted in real time to the edge layer. In addition, process information is
transmitted as well to the edge layer.

• Edge layer: The OptiTwin laboratory workstation component is hosted in the edge layer.
Data pre-processing and analysis are performed on the raw signals acquired in the as-
sets layer. These services include signals de-noising using a moving-average filter and
z-normalization. Furthermore, feature extraction is performed, obtaining KPIs of machin-
ing processes that include statistical features of the time, frequency, and time-frequency
domains. Two additional services are provided by OptiTwin: (i) Local storage of process
information, raw signals, and KPIs in the edge file storage and (ii) observation of predefined
condition ranges in the pre-processed signals and KPIs. When the conditions are fulfilled,
the data is transmitted to the cloud layer for tool wear prediction.

• Fog layer: A fog layer is not currently implemented in the OptiTwin project, as it is in
an early stage of development, where focus is given to establishing core functionalities of
tool wear prediction system and to ensuring accuracy and reliability. As the OptiTwin
project matures, a fog layer will be considered to enhance real-time capabilities, providing
integration with production and logistical systems, such as material requirements planning
(MRP) and supply chain management (SCM) systems.

• Cloud layer: OptiTwin provides cloud storage in two formats: time-series storage using
InfluxDB and a file storage using Dropbox. The tools provided by the OptiTwin cloud
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layer include DL models for tool wear prediction for milling and drilling processes, as well
as a Grafana dashboard for querying historical and real-time data. The DL models are
used by the tool wear monitoring service when the edge layer sends data for tool wear
prediction.

• Services: A tool wear monitoring service is provided by OptiTwin. The service uses the
pre-processed signals and extracted KPI features obtained from the edge layer as inputs,
when condition ranges are met. The DL models hosted in the cloud layer perform the
prediction, and the output, i.e., tool wear prediction, is sent to the cloud layer for storage.
The cloud layer then forwards the prediction to the edge layer, which in turn forwards it
to the CNC controller in the assets layer. The tool wear prediction is displayed on screen
in the CNC controller and a warning is emitted when the tool wear exceeds a predefined
tool wear value.

Figure 6: Mapping of OptiTwin architecture to the architecture proposed in D3.3.

The OptiTwin architecture provides an implementation aligning to the architecture of D3.3
for self-diagnosis, enabling real-time tool wear monitoring and prediction for improved machin-
ing efficiency. The system captures and analyses sensor data, extracts relevant features, and
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deploys predictive model, ensuring accurate and real-time tool wear insights. While the current
implementation lacks a fog layer, plans are in place to integrate it in future developments to en-
hance real-time capabilities and to facilitate seamless integration with production and logistical
systems. The following section will further map the requirements for self-diagnosis presented in
D3.3, providing a more thorough assessment of the suitability of OptiTwin as demonstrator of
self-diagnosis systems.
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5 Requirements mapping

In this section, the requirements mapping process is performed by associating specific require-
ments for self-diagnosis behavior derived from D3.3 with elements and features within the Op-
tiTwin platform. Table 1 provides an overview of the requirements and components associated
with the presented architecture and illustrates how these requirements are mapped into the
implementation of the OptiTwin system in a manufacturing environment. Requirements are
organized into categories such as Connectivity, Data Management, Monitoring and Analysis,
Planning, Executing, and Knowledge. The table outlines sub-requirements for each of these cat-
egories, including the fulfillment status, OptiTwin resources, inputs received by OptiTwin, and
OptiTwin outputs.

The connectivity requirement fulfillment highlights the diverse array of signals acquired
from the CNC machine, such as real RPM, position, and current feedback, showcasing the ability
of the system to monitor various parameters. Several application protocols, including MQTT
and HTTPS, and an Ethernet communication protocol ensure efficient data transfer between the
CNC machine and the other components of OptiTwin system, promoting seamless connectivity.

For the data management requirement, the system fulfills the sub-requirements. Data
collection and storage, with specified sampling frequencies and storage capacities, are defined as
outlined in D3.3. Security measures, such as firewalls, OAuth access tokens, and TLS security,
ensure the confidentiality and integrity of the collected data. This section also emphasizes the
importance of securing the data during its transfer from the edge to the cloud and maintaining
user authentication for access control.

The monitoring and analysis requirement unveils the robust capabilities of the system
in the data pre-processing and analysis aspects. Various techniques, including moving average
filters and z-score normalization, are employed for noise reduction. Moreover, deep meta-learning
models and decision trees are applied for data analysis, showcasing the system’s adaptability to
different machining processes. It was identified that fault detection and performance analysis
features are yet to be implemented. However, the lacking sub-requirements do not hinder the
implementation of the core functionality of the system that implements elf-diagnoses tool wear.

For the planning requirement, OptiTwin fulfills one of the sub-requirements. The system
effectively handles alerting and accessibility requirements, as evidenced by the on-screen alarm
feature, ensuring that relevant stakeholders receive timely notifications. However, there are still
gaps in fulfilling the fault assessment and the recovery plan sub-requirements. The absence of a
fault assessment mechanism prevents the system from generating reports based on expert knowl-
edge and root cause analyses, hindering a comprehensive understanding of failures. Additionally,
the lack of a recovery plan suggests a potential gap in addressing issues and implementing cor-
rective actions systematically. Regarding policies adjustments, the system has a well-defined
strategy to be implemented in upcoming versions, incorporating standards like ISO 8688-1:1989
and manual adjustments as well. The planned implementation of continual learning techniques
for fine tuning of DL models when new data becomes available showcases the adaptability poten-
tial. Adjusted policies and model weights serve as valuable outputs, contributing to the system’s
resilience and adaptability.

Similarly for the executing requirement, the system faces challenges in plan execution and
fault correction. This is anticipated considering the absence of fault assessment and recovery

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme

under the Marie Sk lodowska-Curie grant No. 814078

-15-



DiManD Deliverable D3.4

plans in the planning phase. However, the reporting sub-requirement has been fulfilled, with the
use of Grafana dashboards to effectively visualize failure reports to stakeholders,

Finally, the knowledge requirement underscores the system capability to manage informa-
tion effectively. In the context of the OptiTwin framework, the subrequirements are fulfilled.
For historical data, the system successfully captures measurements and tags related to CNC
machine variables in an Influx database, while storing and managing user information in a Post-
greSQL database. Additionally, historical experiment data is stored in Dropbox and on the edge.
Policies, in adherence to ISO 8688-1:1989 and observation condition ranges, are systematically
managed and updated within the databases. Symptoms and conditions are monitored through
a tool wear log, supported by machine learning models that contribute to generating logs and
alarms. Lastly, the information sub-requirement encompasses the generation of information from
data, where KPIs are extracted from cutting conditions and signals.
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Monitoring and
analysis

Data pre-processing Yes

Moving average filter, z-score nor-
malization, feature extraction:

- Time domain: RMS, variance,
maximum, skewness, kurtosis,
peak-to-peak

- Frequency domain: Spectral skew-
ness and spectral kurtosis

- Time-frequency domain: Max
wavelet energy of wavelet coeffi-
cients

Raw signals
Normalized and noise
reduced signals, as well
as statistical features

Data analysis Yes
- Deep meta learning model for
milling

- Decision tree for drilling
Pre-processed data Tool wear value

Fault detection No
Performance analysis No

Planning Alerting and accessibility Yes On-screen alarm Tool wear
Alarm indicating tool
change

Fault assessment No

Policies adjustments

Planned
for future
implemen-
tation

- ISO 8688-1:1989 for maximum tool
wear value

- Manual adjustment of the maxi-
mum acceptable tool wear value to
suit specific requirements

- Continual learning techniques for
fine tuning of DL models as new
data becomes available

Machining data
Adjusted policies and
model weights

Adaptation plan/Recovery plan No
Executing Plan execution No

Fault correction No

Reporting Yes Dashboards (Grafana)
Machining data and
energy consumption
data

Stakeholders

Knowledge Historical data Yes

- Measurements and tags, related to
the variables captured by the CNC
machines and stored within the In-
fluxDB database

- Users and roles within django app
are stored in a PostreSQL

- Historical experiment data, stored
in Dropbox and edge

Machining and experi-
ment data

Dashboards
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Policies Yes
- ISO 8688-1:1989 for maximum tool
wear

- Observation condition ranges

- Maximum tool wear
- Condition ranges

Updated policies

Symptoms and conditions Yes Tool wear log ML models Logs and alarms

Information Yes
- Cutting conditions
- Statistical KPIs

- Signals
- Cutting speed (S)
- Feed rate (F)
- RPM (Rotations Per
Minute)

- Radial depth of cut
(ap)

- Axial depth of cut (ae)

KPIs:
- Time domain: RMS,
variance, maximum,
skewness, kurtosis,
peak-to-peak

- Frequency domain:
Spectral skewness and
spectral kurtosis

- Time-frequency do-
main: Max wavelet
energy of wavelet
coefficients

Table 1: Self-diagnosis requirement analysis for OptiTwin.
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6 Discussion

This study aimed to present a self-diagnosis service to support production analysis, monitoring,
and optimization complying with the CPS architecture proposed in D3.3 of the DiManD project.
The selected service was a cloud-based TCM service deployed in OptiTwin to help improve
machining processes. Based on the architecture and requirements for self-diagnosis services
proposed in D3.3, the following points are worth discussing:

• OptiTwin is currently under development, and its structure is consistent with the CPS
architecture outlined in D3.3. Although certain elements, such as the fog layer, are yet
to be implemented, the primary function of the TCM service is fulfilled. Thus, future
implementations will focus on enhancing features and benefits for the production system.

• The TCM service of OptiTwin operated independently of other functions of the CNC ma-
chine (asset), its controller, or other services that monitor the production system, becoming
a self-contained service. As seen in Figure 6, the data acquisition, processing, storage, and
results do not interfere with the main process execution (in this case, machining) and
provide stand-alone results.

• Due to its modular structure, the TCM service could be easily scaled to include other
assets or to increase its functionalities by combining its outcomes with other self-contained
services. As seen in the architecture mapping, the machining center, CNC, and sensors
correspond as to a single asset instance. As more machines executing similar machining
process are added, service elements in the edge and cloud layers remain the same, due to
the modular approach of OptiTwin.

• Regarding the fulfilment of requirements for self-diagnosis services, the valuable role of the
connectivity, data management, monitoring and analysis, planning, executing, and knowl-
edge requirements was demonstrated. Although the main service (tool wear prediction) is
part of the monitoring and analysis requirement (data analysis), the successful execution
of this service relies on the fulfillment of the other requirements.

• As shown by the current state of OptiTwin, the system does not need to fulfill all sub-
requirements. However, the sub-requirements which are lacking should be assessed ac-
cording to the needs of the target system, considering that the more sub-requirements are
fulfilled the more trustworthy the service becomes. In this sense it is also important to bal-
ance the expected outcomes and current and future business demands, with the investment
needed for its implementation.

Based on this demonstrator, it is possible to state that a self-diagnosis service complying
with the architecture proposed in D3.3 and its requirements can be a self-contained service
able to support process improvement. The benefits resulting from successfully implementing
self-diagnosis services can contribute to the fast adoption of CPS in industrial environments.

The contribution of this work extends beyond outlining requirements and sub-requirements; it
provides the blueprint for analyzing and implementing a self-diagnosis system within machining
processes. By detailing every facet from connectivity to knowledge management, it serves as a
road map for researchers, engineers, and practitioners in the field.

This project has received funding from
the European Union’s Horizon 2020 research and innovation programme
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7 Insights for future implementations

The implementation and analysis of the self-diagnosis service using the OptiTwin project as a
demonstrator, as outlined in this study, revealed significant insights. The potential for supporting
production analysis, monitoring, and optimization within the context of the CPS architecture
proposed in D3.3 of the DiManD project has been shown to be an effective approach. The
following are the insights drawn from the results and discussion presented in the previous sections,
regarding OptiTwin and its potential to improve machining processes.

• Improving and fulfilling the planning requirements within the self-diagnosis service is a
promising opportunity, especially considering the service’s current capability to predict
tool wear.

• The system’s ability to forecast tool wear against the designated useful lifespan of a CNC
machine’s tools acts as a vital trigger to improve machining processes. This alert system,
signaling the necessity for tool replacement, becomes pivotal to prevent potential damages
or substandard product manufacturing.

• Integrating a fault assessment function is a required implementation for self-diagnosis ser-
vices like OptiTwin. This system complements the existing predictive capabilities, allowing
the system, operators, and machinery to identify and address potential tool wear issues.

• Including an adaptation/recovery plan to manage tool wear represents a fairly easy ad-
ditional step for the current service. Initially, manual intervention by operators for tool
replacement and a system reset would be required for a seamless production cycle. Subse-
quently, automating the tool retrieval process from the machine’s internal warehouse and
executing the tool change while preserving fixture setup and manufacturing precision would
represent a desirable progress to increase the autonomy level of the cell-service system.

• While OptiTwin may not fulfill all sub-requirements in its current state, there is a need
to assess these gaps based on the target system. A balance is crucial, considering that the
more sub-requirements fulfilled, the higher the trustworthiness of the service.

• It is essential to weigh the expected outcomes against current and future business de-
mands and the required investment for implementation, providing a practical perspective
for decision-makers.

In a more general scope, using OptiTwin as demonstrator of a self-diagnosis system has
revealed additional insights:

• The work extends beyond outlining requirements and sub-requirements, offering a blueprint
for analyzing and implementing self-diagnosis systems within machining processes. By de-
tailing aspects from connectivity to knowledge management, the architecture and require-
ments of self-diagnosis services serve as a valuable roadmap for researchers, engineers, and
practitioners in the field, facilitating the adoption of CPS in industrial environments and
contributing to the advancement of process improvement.

This project has received funding from
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• OptiTwin uses a pragmatic approach, in which not all components need to be imple-
mented simultaneously. Recognizing that fault assessment and adaptation hold secondary
but crucial significance, the implementation strategy can be subdivided in phases to ad-
dress primary functionalities first while ensuring the essential aspect of fault assessment
and adaptation are not overlooked. This adaptive approach would allow for more manage-
able and efficient deployments, accommodating the intricacies of system development and
ensuring that critical elements are incorporated as the system evolves.

• The concept of incremental functionality is highlighted as a key strategy for implementing
self-diagnosis services. By adopting this approach, stakeholders can witness tangible results
and potential benefits at each stage of implementation. This not only provides a sense of
progress but also allows for iterative improvements based on practical feedback and evolving
requirements. This incremental strategy is particularly valuable in the dynamic field of self-
diagnosis services, where the evolving nature of technology and industry demands can be
accommodated seamlessly, ensuring the system remains adaptable and responsive.

• The modularity embedded in the architecture facilitates the seamless integration of self-
diagnosis services but also enhances their scalability. The modular design allows for the
independent development and deployment of specific components, ensuring that the im-
plementation process can be tailored to the unique requirements of different industrial
settings. This scalability is particularly advantageous in dynamic manufacturing environ-
ments where the scale and complexity of operations may vary. This modular scalability
not only streamlines the initial implementation of self-diagnosis services but also positions
the system for ongoing adaptability.

• The methodology presented in this deliverable provides the steps to map other systems
to the architecture and requirements of self-diagnosis services. This not only facilitates a
streamlined integration process but also enhances the interoperability of diverse systems
within an overarching framework. In addition, this systematic approach contributes to the
scalability and universality of the self-diagnosis service, potentially extending its application
across various industrial contexts.

It is to note that this document does not discuss the specifics of implementation, as it should
be preceded by an in-depth feasibility study and an evaluation period to assess system perfor-
mance. Prior to deployment, a comprehensive analysis needs to be performed to validate the
efficiency of predicted improvements.
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8 Conclusion

In this deliverable, a practical case study has been showcased, highlighting the implementation
of self-diagnosis within a cloud-based platform. Specifically, the focus was on integrating the self-
diagnosis architecture into the OptiTwin project, mainly on services related to diagnosing tool
wear. The study involved a comprehensive two-stage process to align self-diagnosis specifications,
ensuring coherence with the entire architecture and the requirements stipulated in the WP3.3
guidelines.

In the first stage, by mapping the architecture of OptiTwin with the D3.3 architecture, the
self-diagnosis component were verified, enabling real-time monitoring and predictive analysis of
tool wear to significantly enhance machining efficiency. This system actively collects and analyzes
sensor data, identifies critical parameters, and employs predictive models, thereby providing
accurate and immediate insights into tool wear conditions. Although the present configuration
lacks a fog layer, plans are underway to integrate this component in future iterations, to reinforce
real-time capabilities and facilitate seamless integration with production and logistic systems.
In the second stage, the assessment involved benchmarking the connectivity, data management,
monitoring, planning, execution, and knowledge-enabled components against those outlined in
the guidelines. Through this process, it was demonstrated that OptiTwin fulfils all essential
self-diagnosis requirements as defined in the guidelines.

This demonstrator of the self-diagnosis service using the OptiTwin project has revealed key
insights for enhancing production within the CPS architecture proposed in D3.3 of the DiManD
project. Noteworthy opportunities identified for OptiTwin include adding a fog layer and inte-
grating fault assessment functions. In addition, the implementation of adaptation/recovery plans
for tool wear management is seen as a feasible step towards increased autonomy.

Emphasizing a phased deployment strategy, incremental functionality, and the scalability of
the modular architecture, it has been concluded that the architecture and requirements presented
in D3.3 are suitable for implementing self-diagnosis services in industrial settings. It is crucial to
note that specific implementation details necessitate a thorough feasibility study and evaluation
period to ensure the efficiency of predicted improvements before deployment.

It is expected that this deliverable will provide a blueprint for the successful integration of
self-diagnosis capabilities in industrial scenarios, emphasizing real-time monitoring and predictive
analysis.
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