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• Smart tool condition monitoring (TCM) in machining:

– Optimisation of tool performance 

and prevention of tool failure.

• Focus on tool wear.

• Limitations related to:

– Data availability.

– Machine learning (ML) and 

deep learning (DL) models.

– Gap between research and industry.

• Automated machine learning (AutoML) 

pipeline:

– Automated search of optimal

architectures.

– Synthetic augmented data.

– Transfer and continual learning.

• Sensor fusion.

INTRODUCTION

BACKGROUND & LITERATURE REVIEW

1. AutoML meta learner

• Search for optimal architectures and hyperparameters.

• NASA Ames/UC Berkeley milling dataset [1].

• Library: AutoKeras

METHODOLOGY

DL models trained with NASA Ames/UC Berkeley milling dataset [1]

• AutoML used to improve meta-learning DL model.

Face-milling experiments performed.

• 67 cuts performed – 22.3 GB.

• External signal could not be synchronized with CNC → Manually synchronized.

• Sampling frequency seems to be higher than programmed (under revision).

RESULTS THUS FAR

CONCLUSIONS

• DL models with high performance were found with AutoML.

• Dataset is almost ready for training models.

– Sampling frequency validation.

– Exploratory data analysis pending.

• Future work:

– Finish validating and exploring signals.

– Define transfer and continual learning strategies.

– Apply strategies to all models using our dataset.

– Validate and evaluate best performing strategies.
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Machining

• Material removal by cutting

Literature review – Gaps identified

• Lack of big data:

– Varying cutting conditions and materials.

– Unlabelled or unavailable.

• DL models trained with milling data:

– Problem specific and lack of DOE.

– Lack of systematic analysis of suitable scientific variables.

• DL models rarely implemented:

– Machining shop floors and testbeds.
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Enhancing smart monitoring in milling with automated deep transfer and continual learning

Sensor fusion
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3. Transfer and continual learning

Transfer learning:

• Extrapolate model knowledge: 

– Model-based transfer 

       (task adaptation).

– Feature-based transfer 

       (domain adaptation).

• Library: Transfer-Learning-Library

Continual learning:

• Update model with new data:

– Model retraining.

– Model fine tuning.

• Library: Avalanche
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2. Face-milling experiments

• 80 mm face-milling tool holder

    with 1 cutting insert.

• DOE: 

    Full factorial (23 x 4) x 2 repetitions. Cast iron
Stainless steel
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