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Summary

Big data can be defined as potentially large dataset that can either be structured and unstructured.
In manufacturing, shop-floor big data incorporates data collected at every stage of the production
process. This includes data from machines, the connecting devices and even the operators that
perform the manufacturing operation. The large size of the data available on manufacturing shop-
floor presents a need for establishment of tools and techniques along with associated best practices to
leverage the advantage of data-driven performance improvement and optimisation. In work carried
out, the data life-cycle in manufacturing is studied with focus in each of the component.

The main driver is to get an insight on the aspects of correlation among data gathered through
multiple data sources and relate it to certain causality. Various applications are studied to better this
understanding, i.e, establishing a certainty aspect. The grouping of data points, forming a trend or
classification, is extremely vital to study the impact of variations on production performance. This
grouping of data assists in identification of outliers that have a significant impact on the process.

Machine learning and reinforcement learning techniques form the building blocks of the intelligent
manufacturing paradigm. The research assist in identifying possible application and challenges of
these techniques in manufacturing, along with the area where they might have most effect (in
data life-cycle). Application and challenges of data sourcing, collecting, data transmission, storage
processing, and data visualisation are discussed that will help in better understanding of data-cycle
elements on shop-floor in manufacturing. This understanding will be beneficial to attain data-driven
objective for the production process by application of intelligent manufacturing techniques.
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Chapter 1

Introduction

The evolution of data storing and analyzing has been a key factor in the development of manufactur-
ing processes. During the pre-industrial revolution, low amounts of data were stored and were mostly
transmitted verbally, which led to low production volumes and low quality products. Thereafter,
during the first industrial revolution, two kinds of data were being recorded, machine and worker
data. Worker data (attendance and performance) helped improve productivity and machine data
helped better in maintenance. Mass production model introduced in the second industrial revolu-
tion also shifted the job of data processing to educated managers. Scientific methods and statistical
model helped in all stages of manufacturing from production planning to inventory management [1].
With the introduction of Information Technology in manufacturing, computer systems like CAM,
FEA etc. and Information systems like MES,ERP etc. helped in product creation, process opti-
mization and management. The merge between data and manufacturing in the information age has
helped in the shift from dedicated production to flexible production. The extension of Information
Technology with unified communication (ICT) further enhanced the role of data in manufacturing.

The concept of Smart Manufacturing (SM) emerges as a new paradigm focused on responding in
real time to the ever-changing demands and conditions in factories, supply networks and customer
needs [2]. The key Smart Manufacturing (SM) technologies are Cyber-Physical System (CPS),
that integrate physical assets with their computational capabilities; Internet of things (IoT), highly
connected devices embedded with sensors; and big data [3]. The big data age arises with the massive
use of mobile and smart devices, the great availability of IoT devices and cloud computing when
traditional methods were not enough for efficient information processing [4]. In general, the term
big data refers to the storage and analysis of data sets that are characterized by their large volume
and variety of sources; the high velocity at which they are generated and must be processed; and
the value generated by its analysis [5].

In the age of big data technologies, various data sources are present, and data are collected from
connected devices, software solutions, sensors, and Internet of things (IoT). Manufacturing data
can be categorized into management, equipment, user, product, operational, and process data on a
high level [1, 6]. On a low-level, manufacturing data is categorized into structured, semi-structured,
and unstructured data [7]. Structured data have a clear relationship between its attributes, and
it is the easiest data type to store and organize. Structured data are usually represented using
tables. Unstructured data comprises most manufacturing data, has no associated data model, and
cannot be organized using tables or spreadsheets. Examples of unstructured data are images, audio,
text, video. Semi-structured data do not reside in relational databases but have an organizational
structure that makes them easier to analyze. Examples of semi-structured data are XML,JSON and
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HTML.
The collection and processing of the data in the shop floor is critical as most of manufacturing

operations are carried out here. The advent of IoT and new industrial protocols have supported the
acquisition of the in formation from manufacturing cells, products, transport systems and even people
[8]. Thus, many data-driven manufacturing applications have emerged recently e.g. Smart: “design”,
“planning and process optimization”, “Material distribution and tracking”, “Process monitoring”,
“Quality Control” and “equipment maintenance” [1]. Those applications rely on the transformation
of primary data to information use to make the process more intelligent. Examples of shop floor data
are energy consumption, quality test, equipment status, equipment parameters, resource loading,
delivery time, material data, etc [1]. Despite the benefits foreseen by the usage and processing of
data in the shop-floor, there are challenges that need to be considered.

The 5Vs characteristics of big data are widely acknowledged as the challenges of big data in
manufacturing, including volume (level of data size), velocity (ingesting or processing big data in
streams or batches, in real time or non-real time), variety (dealing with complex big data formats,
schemas, semantic models and information), value (analysing data to deliver added-value to some
events), and veracity (validate data consistency and trustworthiness) [9]. In addition, there is the
issue of cyber security; because the big data platform connects the physical space and the cyber
space so intimately, the danger of cybersecurity might swiftly spread to the manufacturing system’s
physical system [7].

The increasing size of the data on shop-floor promotes a need for accurately classifying the
data for reliable decision making . Influx of huge amounts of big data generated from multitude
of production systems on shop floor, make this decision making very complicated and strenuous .
Combined with multiple data sources, different transmission protocols and storage requirements for
production systems on shop-floor make it a very difficult task . This research contribution aims
to develop a homogeneous approach to gathering and utilizing data on shop-floor in manufacturing
environments taking influence and insight from the literature review. It targets the complete data
cycle involving ”Data Sources” and making effective use of them for achieving the desired data re-
quired for objective completion. This approach also discusses the needs, requirements, and methods
for “Data Collection” and “Data Transmission”. A manner of homogenising the data acquired is
needed on shop-floor as it contains multiple production systems operating on different protocols and
other technical requirements . This approach also discusses the “Data Storage”, “Data Processing”,
and “Data Visualisation” applied to shop-floor in manufacturing to achieve the daily production
objectives. The contributed approach builds on these aspects of data cycle to elaborate on “Data
Application” .

This contribution leverages the data cycle widely used to capture data in Big Data paradigm and
leverages it to shop-floor in manufacturing. The suitability and adaptation of data-based manufac-
turing is the main goal in this contribution. This research work , addressing this need for Big Data
on shop-floor, establishes the approach for data acquisition, processing and utilisation for decision
making. The challenges faced towards real-time data-based manufacturing is also elaborated.
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Chapter 2

Data Life Cycle

Big data, and data in general, requires to be structured into specific content formats and context
to be useful for users [10]. Structured data is useful for automating processes in manufacturing,
as it enables machines to be able to communicate among themselves and enables users to extract
knowledge. Nevertheless, data sources have different formats and may be structured, semi-structured
and unstructured. Therefore, research has given focus to the data life cycle and how to extract
knowledge from varied, heterogeneous data sources, enabling informed decision making. In this
context, the data life cycle in manufacturing for decision making has been presented as consisting
of seven stages [1], which are listed in the following. Furthermore, Figure 2.1 presents a visual
representation of the seven stages of the data life cycle.

1. Data sources: Data sources generate data across all the manufacturing value chain and
product life cycle. The data may come from machines and tools, products, users, ICT systems,
and networks.

2. Data collection: After data sources generate data, data collection is performed. The collec-
tion is performed by IoT technologies, by means of smart sensor nodes equipped with sensors,
such as accelerometers and temperature sensors, allowing measurement and monitoring of the
manufacturing processes and the product life cycle in the following stages. Data collection
may be performed at different frequencies, referred to as sampling frequency or sampling rate,
based on the processing power of the sensor node and the requirements of the variable be-
ing measured. In addition to the shop floor data sources, other data collection sources, such
as third-party application program interfaces or web crawling, may be used to collect data,
further enriching and expanding the context of the data collected during the process.

3. Data transmission: Data transmission maintains the communications between the elements
involved in the data life cycle, e.g. manufacturing systems and manufacturing resources.
Defining standardized means of transmission, communication and application protocols define
how the elements communicate data among each other, allowing real-time, secure, and scalable
data transmission. As with data collection, data may be transmitted at different frequencies,
based on the requirements of the monitoring strategy, such as real-time data transmission or
batch data transmission.

4. Data storage: Data obtained during data collection must be stored securely and integrally.
Considering that data sources may be structured, semi-structured and unstructured, several
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Figure 2.1: Example of data life cycle

different storage types may be considered. To this end, besides structured data storage, object-
based storage provides a flexible solution for storing semi-structured and unstructured data,
thus covering the integrity requirement of data storage. In addition, by means of cloud comput-
ing, data storage may achieve cost effectiveness and high-processing power, as well as security,
scalability and heterogeneity.

5. Data processing: Data processing builds upon data storage and refers to the operations
required to extract information, i.e. knowledge from heterogeneous data sources. By pro-
cessing raw data, hidden information and patterns may be revealed, providing stakeholders
with valuable information for decision making. Data is processed by means of data cleaning,
data reduction, data analysis, and data mining techniques. Furthermore, data processing has
become more efficient recently, owing to advances in artificial intelligence, cloud computing
and IoT.

6. Data visualization: Data visualization provides the means to visually understand the in-
formation extracted during data processing. Data may be visualized in dashboards, including
statements, charts, graphs and augmented reality. In addition, data may be queried in real
time or on demand, based on the users needs, enabling decision making based on historical or
real-time data.

7. Data application: Data application refers to data analytics performed during the entire
product life cycle, providing stakeholders with tools for decision making. Data analytics may be
applied during the design phase, translating customer needs into product features and quality
requirements. Thereafter, during production, data analytics monitor the production process
and lead to informed decision making regarding the manufacturing process, improving product
quality and reducing production costs. Finally, during product operation and maintenance,
data analytics may be used to predict possible faults and to provide preventive maintenance,
elongating the life cycle of the product and improving relationships with costumers.
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Chapter 3

Methodology

The work focuses on understanding the approaches and challenges in implementing big data in the
shop-floor. The restriction on just manufacturing shop-floor provides focus to the work. Focus
on just relevant application of the shop-floor provides another filter before defining the research
question.

A general research question is defined for the work - ”What are the recent trends and challenges
in big data life cycle in shop-floor ?”. The research question would be addressed by considering the 6
data life cycle i.e., Data sources, Data collection, Data storage, Data processing, Data transmission
and Data Visualization. Considering the wide scope (address all 6 data life cycle) of the work, a
narrative review is adopted with certain criteria.

After literature collection and considering the research question, relevant information was ex-
tracted from the paper for each data life cycle. The results of the research question helped in
providing interesting insights and derive the current challenges faced in adopting big data in the
manufacturing shop-floor. The methodology adopted for the review is represented in figure 3.1.
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Figure 3.1: Adopted Methodology for the work
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Chapter 4

Results

This section explains the results of the narrative review of publications related to big data life cycle.
The section is divided into different stages of data life cycle. The results presented are a collective
overview of the publications presented in the last decade on each of these stages related to big data
in manufacturing shop-floor.

4.1 Data Sources

Different applications in the context of smart manufacturing require different data sources. They are
mostly based on the utilization of internet of things devices i.e. sensors that take relevant information
of machines, shop-floor, products, people and environmental variables. Another important source
of data are the ones provided by heterogeneous product requirements, specially in product driven
manufacturing applications.

For decision making activities, one example of data sources are customer requirement documents,
datasets or CAD models. These sources are multi-modal with different forms and hence require
separate processing methods. Another example are information embedded in CAD models. In this
case, Collada can be used as the data format to describe CAD models. If the CAD is modeled in
CATIA V5, then the converter from CATIA V5 to Collada can be used to get the Collada model[11].

For monitoring energy in a shop floor are smart meters, current and voltage clamps, or machine-
integrated devices that provide out-of-the-box instantaneous power consumption [12]. Industrial
robots, for example, can provide the power consumption for each joint of the robot directly from a
robot controller [13]. Experimental data regarding actuation torques and servo drive voltages, di-
rectly used to derive the plant input power, can be captured using energy sensors such as clamps[14].
Alternatively, single-phase and 3-phase smart plugs are becoming popular for monitoring the energy
consumption of manufacturing equipment on a shop floor [15].

Human data can also provide additional context information to the current shop-floor situation.
This data provide a better user experience for operators, improving productivity and decision quality.
Human data can be divided into human attribute data and state data. Human attribute data
comprises demographic and characteristic information that will not change or change sporadically
(i.e. age, profession, education status, skills). This data can be later used for ”user modelling” to
deliver information or services according, for instance, to the proficiency, skills or interest of the user.
In the other hand, human state data refers to a collection of all kinds of data that eventually allow the
modelling of abstract human characteristics, such as behaviour, comfort, etc [16]. Traditional IoT
devices can be used to acquire data about operators’ state (current position, vital functions, etc.). For
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Figure 4.1: Data sources in smart manufacturing applications

instance, wearable trackers can measure human performance under stressful or difficult conditions
analyzing them and sending warnings if needed [17]. Furthermore, operators can use portable smart
devices (smartphone, smartwatch, tablet) with NFC (Near Field Communication) readers to check
into a location and receive information about relevant parts of the production system equipped
with NFC or RFID tag.[17]. The behaviour can also be inferred through the interactions that users
have with machines or applications by capturing these with the use of plugins or applications such
as Google Analytics or Matomo. All of the acquired data can be sent to the cloud through IoT
services, which can be processed and analyzed to deliver personalized information to operators and
supervisors or inform them about issues.

Most of data driven automation applications rely on optimal decision making considering status
of machines or conveyors(availability) [18], by using smart sensors to track equipment and people
e.g. RFID tags [19, 20, 21, 22], monitoring best conditions of machines in terms of temperature
e.g. [23] or by using information of images (quality control) that works as a decision factor for the
autonomous reconfiguration and adaptation process [24].

Data-based maintenance sensors include vibration [25, 26], acoustic emission [25, 26], temperature
[21, 25], current [25, 26], velocity [21], pressure [21], and forces [27] from various parts of the machine.
These sensor either exist in the machine [28] or are add-on sensors dependent on the application.
The PLC controllers provide process related data like cutting speed, feed, depth of cut and so on
[25]. Certain application specific data sources also aid in monitoring and maintenance activities.
For example, 3D laser scanner to evaluate the tool flank wear [26]. Another source includes device
status (alarms, logs etc.) [28] and historical failure data [29] logged after quality inspection which
aid in identifying product failure patterns. RFID tags also aid in identifying the defective products
to compare with the failure data [21].

This project has received funding from the European Union’s
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Accuracy and quality of data play a vital role in successful implementation of intelligent systems.
This depends on the effectiveness of data sources. Utilisation of this accumulated data may result in
data gaps and incompatibility in system applications, to overcome which proper calibration needs to
be carried out. Data sources consist of automation system resources (like sensors, actuators, PLC,
SCADA, DCS and CNC systems) and identification systems (like RFID, AutoID, barcodes and vision
systems etc.), communication standards between production resources (like fieldbus, wired and wire-
less communication) along with accompanying data exchange standards (like OPCUA, MTConnect,
MQTT etc.). Automation technologies allow a significant reduction of human participation on the
shop-floor during production operation. There can be processes, however, that are not automated,
mainly due to infeasibility of economic outcome. Specific production processes may involve manual
work to be carried out in different manners. The employee carrying out the work may enter the
information to a management support system. As per research, the information accumulated from
employees through this approach is highly unreliable and cannot be used for machine adaptation.
Automated production systems assist in automated data acquisition without human intervention.
Data accumulated in this manner can be used simultaneously for purposes but certain pre-processing
and appropriate interfaces may be necessary. Most common data sources in automated production
systems for machine adaptation can be control and measurement devices, measurement instruments
like sensors and transducers, PLCs (and other control mechanisms) and robots etc.

4.2 Data Collection

The data collection techniques for decision-making are dependent on the data sources. In case of
customer requirement, natural language processing techniques such as: named entity recognition
[30], relation extraction [31], and attribute extraction [32] are utilised. If the data comes from the
dataset, some deep learning techniques and sampling techniques can be used to collect the data[33].

There are mainly two types of data collection techniques; manual data acquisition and automatic
data acquisition. Manual data acquisition techniques are employee dependent and are gathered
through a manufacturing support system, but are highly inconsistent and unreliable [34]. Automated
data collection is through automated systems like sensors, measuring, and control devices that
correspond to changes in physical process [35].

Data is sourced through primary and secondary data sources and collected sequentially through
different physical events. This accumulated data is of low value density when treated individually,
but together form great value. This value is extracted by evaluations, simulations, and predictions.

Data collection in production system, depends on the nature of the gathered data that may be
structured or unstructured [36]. Multiple frameworks are in-place that incorporate data collection
strategies for structured and unstructured data [̧iteazad2020role. Simply, the data collection for
machine adaptation is a six-step process involving Initialisation, Configuration, Capturing, Analysing
and Focusing [37].

[7] stated that almost half of big data collection applications were distributed in monitoring (25%)
and predictive applications (24%), characterized for real-time process and non-real-time process
respectively. Real-time process data analysis in manufacturing refers to methods where data from
production lines is acquired, processed and delivered to operators, in order to timely detect anomalies
or to quickly know the status of the shop floor, production, machines, and personnel[38]. This is
one of the basic needs for operators on the shop floor, who require a synthesized and centralized
view of multiple sources of data that can even be highly dispersed. On the other hand, predictive
applications do not necessarily require a real-time process, and focuses on extracting patterns and
trends based on historical process data for optimization and management innovation [38].
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Figure 4.2: Data Collection in Manufacturing applications

Even though real time data collection is preferred, In practice it is seldom the case for maintenance
related data. Add-on sensors like temperature, vibration, pressure & forces and PLC controllers for
process data like cutting speed, feed, depth of cut provide near real timely information (every min).
device status and logs [28] are periodically collected and stored. Wear information is collected after a
predefined amount of time to accurately analysis the wear (e.g. tool wear is measured every 20min in
[25]).Some process parameters and performance metrics (Non-real time data) are provided after each
production run/shift [21] like maintenance history, failure record [29], OEE, resource consumption
etc. Almost all the data relevant to monitoring or maintenance are time series data and have a
time stamp while collected. Data collection techniques include support to Restful / configurable
application layer protocol, OPC unified architecture, distributed data acquisition (e.g. Flume [28]).

Automation activities rely on event driven data collection techniques e.g. time driven, quantity
driven, operation driven [39]. Event driven approaches allow the storage of manufacturing informa-
tion after a specific time interval. These techniques are also useful to query manufacturing services
for process automation purposes. Optimal decision making usually require storage of historical data
and and the comparison with a real time monitoring data extraction [21].

For time driven data collection, energy data for manufacturing equipment can be studied. Energy
is usually monitored every given time interval for monitoring total energy consumption, such as every
15 minutes. However, some applications, such as profiling the robotic motions and understanding
the parameters affecting the energy consumption, requires real-time energy data sampled every few
milliseconds [40].

4.3 Data Transmission

The data transmission can be sockets, OPC-UA, MQTT, TCP/IP (such as PLC simulator), or other
communication protocols (Figure 4.3) depending on the application domain and can be dynamically

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

13 /29



DiManD Deliverable D5.3

Industrial
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Figure 4.3: Industrial protocols

chosen. This communication method will be suggested to be used as the middle-ware between the
digital twin and the optimization environment. And it can also be used as the communication
channel between different devices in the digital twin and the real devices. If the workstations
in the manufacturing system use different operating systems, then OPC UA is a better solution.
Cloud-based optimization is recommended in this system because it promotes modularity among
components of the pipeline [41].

The transmission of energy data for further processing depends on the logging frequency of energy
data. Usually, an ethernet connection is used for transmitting the data. However, high-frequency
energy data is first stored in an external memory device of an energy monitoring solution. After
some time, all the collected data is transmitted manually to the processing computer. Some energy
monitoring solutions offer transmitting data via WiFi which is an advantage and disadvantage at the
same time. Transmitting energy data via WiFi is transport flexibility and high transmission distance,
but WiFi comes with shortcomings such as high latency and transmission unreliability. Hence,
industrial standards such as Modbus and Profinet are used for mission-critical applications[42, 40].

Process automation require the connection of manufacturing resources to the internet. Generally
it is either by using Ethernet [18] or wireless communication [19]. Decision making, negotiation
and data acquisition can be implemented using some industrial standards with higher reliability:
OPC-UA, Modbus, Profibus [43]. Internet of things communication can be used to perform data
transmission in a public subscribe manner e.g. MQTT protocol [24] for event driven process au-
tomation purposes.

Real time data could be transmitted through internet, WiFi, Zigbee, 4G & VPN and non-real
time data are transmitted through various technologies or application like Sqoop Apache or Data/X
[21]. Production data and some sensory data (high performance sensors with very high frequency)
are transmitted through Ethernet to a local server and then after feature extraction are sent to
cloud servers through WiFi protocol[25]. The introduction of IoT in the shop-floor has increased
the transmission of low frequency sensor information directly from the source through WiFi from
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various sources. This has also had an impact on the latency of the system’s response. Industrial
wireless network include Industrial switch, Industrial routing and Wireless AP.

Data transmission for machine adaptation is carried out through supported data transmission
protocols like OPCUA , MQTTT, MT Connect etc. Data transmission rates play a vital role that
depend on the manufacturing application. In order to incorporate multiple data formats, standards,
and needs for machine adaptation, a combination of technologies is proposed that assists in data
transmission. A framework in this regard is necessary that aid in data transmission across production
domain.

4.4 Data Storage

Common data formats to store machine information are XML and JSON files [19]. Different data
types include Structured (data presented in tables), Semi-structured (XML, JSON, HTML) and
unstructured data(documents, images, audio, video, text, emails)[39]. Unstructured data are first
processed to extract relevant information internally before being stored in the database. For exam-
ple, Tool Wear information are extracted from the wear images using a image processing software
available with the machine and converted into flank/crater wear values along with their time stamps
[26]. Depending on the type of data, they are stored using different techniques.

Traditionally, Relational DataBase Managers (RDBMS) and DDBS are used to store structured
data. RDBMS are characterized by well-defined schemas and relationships. Basic user information
can be stored in traditional databases such as Mysql, SQL, Postgre, and SQL Lite. RDBMS have
been used for interaction data storage. For instance, Matomo, an user analytics platform, captures
the user’s interaction stream (i.e. clicks, page views) in a Mysql or MariaDB database. These kinds
of databases offer limited scalability.

NO SQL databases (i.e. Mongo DB, Cassandra ) are a better approach for semi-structured
(JSON, XML) and unstructured data (audio,video etc.). XML is also used exchange between struc-
tured to semi-structured [21]). Hadoop Distributed File System (HDFS) could also be used for
dealing with unstructured data. Some examples of these kind of databases include,

• Cassandra to store event data of automation controller

• MogoDB (document NoSQL database) to store machine data

• Time sensitive DBs (TSDBS) like OpenTSDB and InfluxDB to store and access sensor data

• Influx DB and DalmatinerDB for time-stamped or time-series data

Data models are another way of represent the manufacturing data. Data models include two parts
- run time conditions (process knowledge & time-sensitive dimension) and process model (product’s
production requirement). Once the data models are defined, knowledge graph can be used to store
the datas. There are two main types of storage for knowledge graphs. One is RDF-based storage;
the other is graph database based storage. An important design principle of RDF is the ease of data
distribution and sharing, while graph databases focus on efficient graph queries and search. The
Neo4j system is a widely used graph database [44]. It has an active community, and the system itself
is efficient in querying, but the only shortcoming is that it does not support quasi-distribution.

Smart manufacturing applications tend to use distributed file systems (for data-at-rest) and
databases (for data-at-motion) for processing and storage [18]. Historical data are ingested to and
from databases, to predict the production planning performance, safety critical aspects and network
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Table 4.1: Data storage types and technologies used in manufacturing shop-floor

Data Storage Type Data Storage Technologies
Relational database

(RDBMS)
MySQL, SQLlite, Oracle DB, SQL server, ProgresSQL

NoSQL database

Column-based: HBase,Cassandra
Document-based: MongoDB

Key value-based: Redis
Graph-based: Neo4j

NewSQL database VoltDB

Other data storage types

Time series data base : OpenTSDB
Search engine : Solr, Elasticsearch, SparkSQL

Data warehouse : Hive, Kylin
ETL (Extract, Transform and Load) : Pig

Others : HDFS, Clustrix, NuoDB

designs. To reduce the amount of space needed for storing some tools used are Hadoop and Map
reduce.

Production and Sensor data from the machines are initially stored in industrial computers con-
nected to each machines, which are then processed internally for feature extractions and understand-
ing the machine state [25]. Its later sent to cloud servers where the data are managed and stored in
the database. The cloud acts as a remote server for data storage.

Automation applications are relying in the storage of manufacturing information as well as ser-
vices, increases the responsiveness and interoperability of the shop floor and thus the capacity of
automation. The choice of storage solutions greatly affects the application. High-frequency big data
files require special solutions such as Hadoop and Spark that can deal with the high volume property
of Big Data. The energy data is usually recorded in regular timestamps, which results in time-series
data [45]. There are special database solutions for storing time-series data, such as InfluxDB. Also,
relational database methods are used in energy data for their reliability. Some monitoring solutions
store the collected energy in device memory using comma-separated values (CSV) files.

4.5 Data Processing

When information is gathered and transformed into usable form, data processing takes place. Data
processing must be done appropriately in order to avoid having a detrimental impact on the final
product, or data output, and is typically carried out by a data scientist or team of data scientists.
Different techniques can be used for data processing. (Figure 4.4)

In energy consumption area, data processing is a computationally intensive task. First, the energy
should be resampled to match the recorded timestamps. Resampling methods such as averaging,
forward filling, or backward filling are usually used in the literature [46]. The averaging method
takes an average value within a pre-defined time interval and replaces the missing values with
average energy consumption. In forward- and backward filling methods missing timestamps are
filled with values before or after the missing timestamp, respectively. Once the data is processed,
it is fed into application-dependent algorithms such as ARIMA, SARIMA, Bayesian Optimization,
clustering, neural networks [47], genetic algorithms [48] and parameter identification methods [49].

As for processing the data in decison making, there are different approaches. First, in a large
number of process text documents, a method based on multi-neural collaboration is used to extract
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Figure 4.4: Data processing process

knowledge, and the extracted knowledge is classified accordingly through tags. At this level, ontology
model and schema layer of the knowledge graph should be defined. Then the knowledge should be
represented based on fuzzy comprehensive evaluation [50]. Some knowledge can be directly described
as the production rules [51], some knowledge is more suitable to be described as knowledge graph
[52]. At last, due to the wide range of knowledge sources, the knowledge base constructed according
to the two steps above has high redundancy, so it is necessary to use latent semantic analysis,
similarity calculations and attribute weighting to eliminate redundancy in the knowledge. First, the
entity triples in the preliminary knowledge base are mapped with the Protege ontology library, and
then the semantic web rule language (SWRL) is used to represent the empirical rule knowledge.
Finally, the data layer is instantiated to construct the final knowledge base [53].

As for the data processing in HMI, in addition to the use of several data mining and machine
learning techniques, the development of analytic solutions will require selecting the right strategy
according to diverse scenarios. Streaming, small-batch, and large-batch analytics are the three main
processing strategies for big data [54]. Batch processing is the most traditional form of processing
where big volumes of data are collected, that can represent a large period of time (i.e. hours, day,
week) and analyzed over very complex machine learning models. Here, real-time is not a priority.
Streaming is a processing technique for real-time analysis of data streams, particularly necessary
when data arrives at high velocity. Small-batch processing (also known as micro-batch) is the process
of small cumulus of data on a small time window (i.e. minutes).

Data processing can be also used for automation.Intelligent decision making for process automa-
tion and self-organization requires the analysis of machine status and energy consumption. This
makes necessary the use of machine learning techniques. Some examples for process automation
include: Neural networks, Support vector machine, K-Nearest Neighbours [23]. Negotiation based
approaches with machine learning can be found when choosing proper routing or transportation of
products e.g. for storing or scrapping them[24]. Genetic algorithms are also used under the scope
of ML. For process automation genetic algorithms allow the finding of optimal production resources
e.g. the ones with minimum energy consumption or the ones that require less production time. In
general, classical machine learning techniques are enough for this type applications.

Besides, in maintenance sector, feature extraction of the time series data from sensors like vi-
bration/forces include both time-domain and frequency domain feature extraction. Time domain
features include RMS, peak, mean, standard deviation, skewness, Kurtosis, Crest factor and so on
[25]. Frequency domain include Main frequency, harmonics, freq. band energy% etc. It is relevant
only for high frequency data to be considered in frequency domain after noise reduction in the signal.
Data and pattern mining models for maintenance (e.g. Apriori [21] or FPGrowth [29]) could be used
for knowledge and rules generation. Generated knowlege along with the production data could aid
in fault diagnosis & prediction. Correlation analysis provides internal relationships between device
and faults [28].

Traditional and Deep machine Learning techniques are used for data analytic. Clustering is
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by far the most common machine learning techniques used for the preliminary grouping of the
sensor information and to create labels according to their process state [25, 29]. This is followed
by classification techniques based on traditional (e.g. K-Means in [29]) or deep learning (e.g. CNN
in [27]). Some technologies used for data analysis in maintenance include STORM [21] (distributed
computing), STORM cluster [28] (resource scheduling), Hadoop [21] (offline prediction - considering
both current status & historical information).

The collected data needs to be processed to generate insights. Primary steps in data processing
involve cleaning the data to remove noisy and incorrect format issues. Streamlink(Flink, Storm),
micro-batching (Spark)and batching data processing (MapReduce) provide technologies to clean
and process big data volumes. Manufacturing applications like complex event processing by Storm,
and detecting deviations by Flink, prediction and quality control by MapReduce are some examples
where these technologies are used to process manufacturing data. Knowledge can be generated by
harvesting big data technologies on the generated big data. Apache Hive-Mind based platforms has
aided to this knowledge generation for predictive maintenance. Hadoop and OWL technologies can
manage knowledge of intelligent applications for smart manufacturing applications.

4.6 Data Visualization

Data visualization is an integral part of data analysis which concentrates on the use of tables and
graphs for presenting data, quantitative and qualitative information to the user and for the user to
communicate with the data [55]. Few state-of-the-art works describe methods for data visualization
in the context of smart manufacturing automation and big data. Usually, it is implemented to create
dashboards to monitor and access production status or in some cases as a direct interface between
the customer and the shop floor. Thus, dashboards enable the presentation of a grand amount of
data such as sensor data, manufacturing planning, and operational and maintenance data.

Dashboards are often interactive and users can filter and query data, zoom in/out and scroll.
Many of the visualizations show changes over time and are updated as new data is released. Fur-
thermore, dashboards can display real-time data that is updated every few seconds or minutes. In
general, data visualization can include [56]:

• Different types of charts and graphs, tables, time trends, etc.

• Interactive widgets (i.e. knobs, dimers, key pads, etc.) used to interact with CPS, IoT devices
and applications, based on current data analysis.

• Visualization of geo-referenced data (machines in different locations, operators location track-
ing, external sensors)

From the technological perspective, in research, scholars prefer the use of Python programming
language to develop machine learning models. Therefore, for data visualization, Python libraries
such as Seaborn or Matplotlib are chosen to develop charts and graphs. [57] used matplotlib to
visualize a heat map o to find the correlation between the variables involved on milling tool wear
(Figure 4.5.a). Depending on the tools and technology used (e.g. SQL databases, graph databases),
visualisation methods integrated into the development environment can be used[44].

However, these options are not intuitive or designed for end-users. At the moment, multiple
platforms and frameworks have come out to produce analytics applications and visualizations in a
simple manner with very aesthetically pleasing results. Grafana is one of the most popular open-
source platforms for interactive data visualization. [58] used Grafana to create a dashboard for
visualising energy data at the workstation level to show operational KPI and power consumption
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Figure 4.5: Data visualization. a) [57] Seaborn visualization b) [58] Grafana visualization c)[54] Grafana and Quick-
Sight d) [28] web and mobile apps e) [59] HTML5, CSS, JavaScript web application

trends (Figure 4.5.b). Similarly, [54] developed dashboards using Grafana and Amazon QuickSight
for its compatibility with Spark to display the results of small-batch processing for the detection
of anomalies on CNC Machines (Figure 4.5.c). Other similar products include Qlikview, Tableau,
Kibana and Splunk.

Even when these platforms are claimed for their ease of use; the target users are data scien-
tists and engineers or business analysts or DevOps engineers. For end-users (i.e customers, opera-
tors, supervisors) customized applications accessible through mobile devices or web interfaces using
browsers[43] are the best option. In [25], a Web and iOS-based user interface is used in real-time for
decision making on the assessment of health. In [28], the manufacturing data processed is sent to
backstage supporters and the diagnosis or prognosis reports are visualized on large screens through
a web application (Single View integrated failure map pattern and cause [29]) or sent to mobile
devices of the maintenance personnel (Figure 4.5.d). These kinds of applications will require some
sort of software development. Javascript is the ultimate web standard for reactive applications, with
multiple frameworks such as React, AngularJs, NodeJs, etc. There are specific Javascript libraries
that allow the development of interactive visualizations such as CanvasJS or ChartJS. [59] devel-
oped a web application for historical analysis and real-time tracking of assembly line performance.
The web is created with a combination of HTML5, CSS, JavaScript, the JavaScript Data-Driven
Documents (D3) library, the Three.js and several JavaScript framework & utility libraries including
Underscore.js, Backbone.js and JQuery (Figure 4.5.e).

From the user perspective, it is important to consider that manufacturing processes involve differ-
ent types of users where multiple variables intervene (i.e. expertise, role, age, etc). Therefore, users
will have different perceptions to visual data presentation and interactive data analysis [38]. User-
centred design as a methodology can help to understand the requirements and needs of determined
roles in industry.
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Chapter 5

Discussion

Different manufacturing applications require different data sources. Data sources comprise mostly
smart sensors and IoT devices that convert physical variables into digitized measurable units. Smart
decision making in product driven manufacturing applications rely on specifications of production
requirements. Manufacturing automation concepts are based on logic-based or negotiation based
approaches. Data-driven automation has been less considered, making this as an opportunity for
future research. Other applications rely fundamentally in the data acquisition and a number of
sensors placed in shop-floor machines and resources. Two examples are maintenance and energy
optimization. In one hand maintenance rely on acoustics, temperature, velocity, pressure and other
variables, to understand health status of machines. On the other hand, energy optimization appli-
cation rely mostly on the measurement of electrical variables i.e. mart meters, current and voltage
clamps, single-phase and 3-phase smart plugs. With the advent of human-centre manufacturing
applications, the acquisition of data from operators is coming a trend of current research, specially
data that can be used to model human characteristics, such as behaviour and comfort. Wearable
trackers can measure human performance under stressful or difficult conditions. Important consid-
erations regarding data sources are privacy in the collection of data that in some cases should be
can not even be used because of various regulations i.e General Data Protection Regulation.

The data collected from source can be accumulated through with either manual data acquisition
or automatic data acquisition. The trade-off happens in form or consistency and reliability of the
data. Data collection is majorly dependent on the type of data source and can come to sources
such as evaluations, simulations, and predictions. Data collected can be structured or unstructured.
This data collection is usually accompanied by an underlying framework that leverages step-wise
process to gather desired data for decision-making. Certain applications like predictive maintenance,
monitoring, energy consumption and event-driven automation require data to be collected as per
specific requirements. These requirements can be real-time, time-driven, periodic or fulfilling any
other application-specific criterion.

The data transmission can be sockets, OPC-UA, MQTT, TCP/IP (such as PLC simulator), or
other communication protocols depending on the application domain and can be dynamically chosen.
This communication method will be suggested as the middle-ware between the digital twin and the
optimization environment. Moreover, it can also be used as the communication channel between
different devices in the digital twin and the real devices. If the workstations in the manufacturing
system use different operating systems, then OPC UA is a better solution. The transmission of
data for further processing depends on the logging frequency of energy data. Usually, an ethernet
connection is used for transmitting the data. However, high-frequency energy data is first stored in
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an external memory device of an energy monitoring solution. After some time, all the collected data
is transmitted manually to the processing computer. Some monitoring solutions offer transmitting
data via WiFi which is an advantage and disadvantage at the same time. Transmitting energy
data via WiFi is transport flexibility and high transmission distance, but WiFi has shortcomings
such as high latency and transmission unreliability. Hence, industrial standards such as Modbus
and Profinet are used for mission-critical applications. The introduction of IoT on the shop floor
has increased the transmission of low-frequency sensor information directly from the source through
WiFi from various sources. This has also impacted the latency of the system’s response. Industrial
wireless networks include Industrial switches, Industrial routing, and Wireless AP.

As manufacturers becomes increasingly reliant on sensors and various data sources, data storage
will become an increasingly important concern, especially the ability to storage large amount of data.
There is a trend in the manufacturers from moving from traditional RDBMS database to NoSQL
and NewSQL database considering the scalabilty. There is a need to develop techniques to not just
store the data in a structured manner but also filter the redundant data and delete the data which
is no longer relevant. This would greatly reduce the storage cost and complexity. There are very
few work dealing with this aspect.

Data processing techniques has been widely used in manufacturing. With the development of
Internet of Things (IoT), 5G, and cloud computing technologies, the amount of data from manu-
facturing systems has been increasing rapidly. With massive industrial data, achievements beyond
expectations have been made in the product design, manufacturing, and maintain process. Data
processing have been a core technology to empower intelligent manufacturing systems.

Finally, visualization is usually a neglected aspect of research. As demonstrated, multiple schol-
ars prefer python libraries for easy static visualizations. However, for providing a proper commercial
implementation of big data applications, visualization is as essential as other stages. The ability
of applications to further exploit data from user behaviour to improve the visualization aspect in
manufacturing is something that needs further research. Furthermore, there is a lack of standard-
ization that requires researchers and engineers to identify generic abstractions for industrial data
and understand different users groups to develop new frameworks for visualization applications.

Challenges

In this section, we compiled the challenges found in the literature. Although some of the challenges
below are application-specific, they were found quite often in the reviewed literature.

• Data measurement solutions usually come with inherent measurement errors. Although these
errors are relatively small, they affect transferability [60]. For instance, the same sensor for
the same equipment performing the same application can yield different energy consumption
values. These noisy and non-deterministic measurement values challenge data-processing and
decision-making algorithms.

• The frequency of collected data [40] is another challenge in the literature. A sampling at a
high rate produces much data that is difficult to transmit and process in real-time. However,
certain applications require high-frequency data, such as energy parameter profiling applica-
tions. Therefore, careful tradeoff should be considered energy data from manufacturing in a
shop floor

• To capture lifecycle data, discover knowledge and share it among all lifecycle stakeholders
[21], a data acquisition system is needed that incorporates all information gathered during the
production process.
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• Real-time processing, analysis, production reporting, and monitoring of data-driven sources
must be in place for real-time analysis of sensor data[28], [28].

• Lack of reliable data and valuable knowledge that can be employed to support the optimized
decision-making of product life cycle management.

• The heterogeneity of data is another challenge. For example, fault prediction considering
multi-source heterogeneous data and complex processes [26, 29, 27]

• The heterogeneity requires novel data processing techniques. Utilizing traditional signal pro-
cessing techniques considering the 5V challenges posed by industrial big data [26], fault pre-
diction considering multi-source heterogeneous data and complex processes [26, 29, 27].

• The design for data visualization to improve human interaction is a complex task. [61] listed
different aspects to consider for data visualization, especially Visual and task complexity, re-
ferring that complex infographics and large amounts of data unorganized or ungrouped, can
cause distress to users. Also, the increase in the number of steps to realize a task can produce
mistakes and reduce the operator’s performance.

• Data issues are fundamental challenges to smart manufacturing, which extract actionable infor-
mation from good quality of data. In order to prepare the suitable data for smart applications,
amount of cost and time is consumed to address the data issues.

• Cybersecurity will continuously challenge manufacturing since security standards are still not
available in some system [62].

• The security of big data analytics in manufacturing systems is another major concern in the
application.

• Governance of big data handles data integrity, quality, provenance, retention, processing, and
analysis in full data lifecycle [63]. The governance of industrial big data considers the issues
of security and privacy [64].
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Chapter 6

Conclusion

In this research, a basis for the development of an homogeneous approach to gather and use data
on shop-floor in manufacturing environments has been presented. A literature review of research
regarding big data in manufacturing has been performed, targeting the complete data life cycle. In
this regard, the needs, requirements and methods for the seven stages of the data life cycle of big data
in manufacturing have been presented and discussed. Therefore, approaches for data acquisition,
processing and utilisation for decision making in shop-floor in manufacturing have been established
and challenges in each stage have been elaborated.

As results of this study, approaches have been identified in each stage of the big-data life cycle in
manufacturing, focusing on maintenance, automation, quality, decision making, energy optimization,
user interaction, and adaptability. Data sources, such as sensors, documents and models, have been
identified and elaborated, detailing their usage and benefits, as well as possible drawbacks. There-
upon, data collection techniques have been presented, i.e. manual data acquisition and automatic
data acquisition, describing the benefits and drawbacks of each. Furthermore, a separation between
monitoring and predictive applications has been described, highlighting the effect that the intended
application has in data collection. Having presented data collection techniques, data transmission
protocols and techniques have been studied. Techniques and protocols for data transmission have
been presented, as well as the cases in which each may be used. Following, data storage possibilities
have been presented. Since data may be structured, semi-structured and unstructured, storage op-
tions have been discussed for each type of data structure, as well as the methods to integrate data
in different formats and from different sources. In the context of data processing, several approaches
towards data processing have been presented, as well as leading technologies for big data processing.
In general, artificial intelligence and statistical approaches have been identified as the main con-
tributors in this stage. Finally, data visualization methods, an integral part of data analysis, have
been described in the context of smart manufacturing automation and big data. Several platforms
and frameworks for data visualization have been reviewed and programming languages suitable for
creating dashboards and visualization applications have been described.

Have been presented the results of the literature review, a discussion of the trends and insights
from the review process has been presented. It has been identified that the primary data sources
include smart sensors and IoT devices. Nevertheless, human-centered manufacturing applications
have included data acquisition from operators, allowing modelling of behaviour and comfort. An
important consideration that has been highlighted, regardless of the source of the data, is data
privacy and restrictions that may apply due to regulations. Regarding data transmission, several
protocols have been identified and their usage will depend on the technologies being used and the
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application. Data format, data size, transmission distance and transmission rates have a determining
effect on which protocols to use and how to integrate the data being sent. Thereafter, in data
storage, moving from traditional structured data storage, such as RDBMS, to unstructured and
semi-structured data storage, such as NoSQL and NewSQL, has been identified as the leading
trend. In addition, it has been identified that there is a lack of focus on irrelevant data filtering
and deletion, which might help to reduce cost and processing power in applications where there
are economical or storage constraints. In general, this research has identified several challenges in
literature. Challenges involve possible errors in the collected data, which may lead to inaccurate
measurements, as well as the challenges regarding the handling of varied sampling frequencies and
the impact on the transmission technologies used. Furthermore, challenges regarding heterogeneity
of data have been identified, where the integration of varied data sources could represent a challenge
during data storage, processing, and visualization, deriving in incorrect analysis of data or complexity
in understanding the data obtained during the data life cycle. Finally, cybersecurity has been
identified as an important challenge, as several studies have lacked attention in this regard.

Having reviewed and discussed the state of the art of big-data life cycle in shop-floor in manufac-
turing, a consolidated framework and methodology for the big-data life cycle, based on the findings
of this review, is to be presented in the upcoming sections of this work package, as well as test cases
for validation.
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