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Chapter 1

Introduction and Context

Manufacturing today has to cope with increasingly dynamic and changing en-
vironments. Market fluctuations, the effects caused by unpredictable material
shortages and supply chain disruption, highly variable market demands in terms
of volumes and product types, and the availability of workers and availability
of skills can all require system robustness and resilience.

A proposed solution to this type of variability is the employment of dis-
tributed intelligence in manufacturing systems - also called decentralised con-
trol. Traditional control strategies in manufacturing are highly centralised and
hierarchical to optimise for fixed, high volume production. This however also
leads to rigidity and an inability to rapidly respond to changes [1]. A variety of
approaches have been proposed to improve the responsiveness of manufactur-
ing, perhaps the most well known being the principles of lean manufacturing
[2]. This involves a shift to a network model of organisation (instead of hi-
erarchical) and enables workers to make local decisions and rely on dynamic
self-coordination.

Lean manufacturing and related disciplines focus on human decision mak-
ing in distributed complex systems. However, technological development in
machine intelligence and communication standards is starting to replicate the
dynamics of empowered workers making distributed local decisions in the dig-
ital domain. Digital intelligent manufacturing - commonly called Industry 4.0
(or I4.0) [3] - is a drive to digitalise manufacturing processes and enable vertical
and horizontal data sharing. This shared ubiquitous data can then be used to
coordinate manufacturing operations, be used for monitoring and optimisation
of processes, and enable the use of artificial intelligence methods to discover
new insights. As a concept, I4.0 ties together a lot of modern thinking about
how manufacturing will look like in the immediate future.

Two key related enablers of Distributed Manufacturing and Industry 4.0 are
the Internet of Things (IoT) and Cyber-Physical Systems (CPS). IoT (some-
times called the Industrial Internet of Things [4] or IIoT in the manufacturing
context) is integrating computational and networking capability into physical
”things”. In the manufacturing context this means enabling the manufacturing
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assets (and even the products - see Deliverable 4.2) to be intelligent, networked,
and collaborative. CPS (sometimes called Cyber-Physical Production Systems
or CPPS in the manufacturing context) is a physical manufacturing system
where the behaviour is controlled by software intelligence [5]. Unlike tradi-
tional embedded systems, the behaviour emerges from a collaborative network
of devices rather than each device being stand alone. A true CPS has such
closely integrated physical and software components that the two cannot be
considered independently. The use of these two approaches enable distributed
manufacturing intelligence at all levels of a manufacturing system, including ’at
the edge’. This enables localised decision making and data processing, as well
as data exchange and networking to allow assets to share data and collaborate.

These new developments in embedded, networked computing in manufac-
turing offer multiple opportunities to meet the dynamic demands and changing
environments faced by modern manufacturing enterprises, by enabling rapid
localised analysis of data and response to disruptions without unnecessary es-
calation. Distributed intelligence and decentralised control in manufacturing
are not new concepts. The use of decentralised manufacturing control (e.g. via
the use of multiple Programmable Logic Controllers) has been explored [6], par-
ticularly in the context of re-configurable manufacturing systems [7]. However,
a key modern challenge for Distributed Manufacturing is the concept of Auton-
omy - the ability for a system to make independent decisions and respond to
new unexpected situations without external input. For a manufacturing system
with distributed intelligence to truly meet the demands of dynamic manufac-
turing environments it must respond to new and unforeseen situations - and
hence must be autonomous.

Autonomy is being adopted in different industrial contexts and research do-
mains - it is a key enabler in the field of self-driving cars for example [8]. How-
ever, there are clear divergences when describing the concept of autonomous
systems and what autonomy actually means as a term. To realize the imple-
mentation of autonomous behaviour in manufacturing systems it is essential to
specify what is exactly meant by autonomy, how autonomous manufacturing
systems are different from traditional and other manufacturing systems, and
how autonomous manufacturing systems can be identified and achieved based
on their features and enabling technologies. It is also required that the barriers
and challenges preventing companies from implementing these technologies and
approaches are identified.

Contextual note: ”Distributed Manufacturing” has two possible definitions
within manufacturing research. The first relates to the distribution of intelli-
gence in a manufacturing system and is largely synonymous with the decen-
tralisation of control i.e. the transition from a single central control system
to delegated control distributed amongst the assets which comprise the man-
ufacturing system. The second definition relates to the business and supply
strategy of geographical distribution of manufacturing facilities, using multiple
smaller, leaner production units rather than single monolithic factories. To ex-
acerbate the issue, both areas of research contribute to greater flexibility and
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responsiveness of manufacturing in the face of disruptions.
This deliverable, task, work package, and project use the first definition of

distributed manufacturing, as befits the project focus on digital manufacturing.
The term ”Distributed Manufacturing Intelligence” is used to help disambiguate
the terms.

1.1 Objectives of this Deliverable

This document represents deliverable D4.1 - Requirements Specification for Dis-
tributed Manufacturing Systems. It is the only deliverable of Task 4.1 - Def-
inition of Industrial Barriers and Challenges to Context-Aware Autonomous
Systems with Respect to Current Practises, which is part of Work Package 4
- Autonomous Context Aware Manufacturing Platforms. The objective of the
work package is to enable increased adoption of distributed, intelligent, au-
tonomous manufacturing systems which include the products themselves as
active assets within the production process.

Distributed intelligent manufacturing requires three key elements: the en-
abling architecture on which system intelligence can operate (i.e. the IoT and
CPS considerations), an understanding of what intelligence a system needs to
exhibit in order to maximise productivity and other KPIs (i.e. the distributed
autonomous intelligence), and the technical implementation by which the dis-
tributed intelligence can be achieved (e.g. a multi-agent system).

The requirements and challenges regarding the enabling technical architec-
ture for distributed manufacturing systems will be developed in Work Package
3. The requirements and challenges regarding the agent-based implementation
of the distributed intelligence will be developed in Work Package 5. To ensure
work is not unnecessarily replicated, this task in Work Package 4 focuses on
defining what the requirements for distributed autonomous intelligence is, and
the barriers preventing its adoption.

This deliverable divides this challenge into two parts:

1. Definition of what ”Autonomy” is in this context and the requirements
for its implementation. To progress the field of distributed manufactur-
ing, clear requirements for how autonomy could be implemented must be
defined. Firstly however, there is a lack of a clear definition of autonomy,
and a lack of a clear model for how autonomy could be approached and
implemented. We introduce a definition of autonomy for the manufac-
turing context, and a model that represents the incremental requirements
for introducing a distributed manufacturing system and then progressing
to full autonomy.

2. Identification of the barriers and challenges which are inhibiting the up-
take of autonomous systems in manufacturing, both in terms of technical
barriers but also the social, economic, and environmental barriers.

The remainder of this document comprises two chapters - one each for the
two points above.
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Chapter 2

A Definition and
Requirements Model of
Automation for Distributed
Manufacturing

2.1 Autonomy Introduction

Manufacturing today requires an increasingly dynamic approach with rapid, di-
verse changes to meet the demands of the market. Short product life cycles, as
well as decreasing batch sizes with simultaneously increasing product variants
and complexity, are challenging the traditional production systems [9, 10]. Cur-
rent conventional structures and methods cannot handle changes, unpredictable
events, and disturbances in a productive, cost-effective manner [11]. To man-
age these dynamics, the new industrial concept of Industry 4.0 has emerged, a
trend linked to digitalization and distributed intelligence in systems which could
enable factories to achieve higher production variety with reduced downtimes
[12, 13]. These aspects are enablers for distributed industrial systems which
can handle increasing complexity [10, 14], and respond quickly to unexpected
disturbances without the need for centralized control and re-planning and with
minimum human intervention [15, 16, 17], while improving yield, quality, safety,
and decreasing cost and energy consumption [14, 17, 18]. The ability to respond
to these unplanned distrubances and events is typically called Autonomy.

For these systems to be successfully introduced into the manufacturing in-
dustry, it is essential to establish what autonomy means in this context. As
the concept of autonomy has been associated with independence [19] and living
entities [20], the first definitions of autonomy come from outside the engineer-
ing domain. Kant’s philosophy defines an autonomous being as a self-governing
individual [21]. This notion of autonomy and its relation to biological individ-
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uals are found in autonomous organisms that not only reacts to stimuli, but
makes decisions based on its internal constraints, builds its own identity, and
transforms the environment as a result of its actions [20].

As the concept of autonomy has drawn attention from different research
fields, several definitions have been used within different domains. However,
this increasing adoption of the word “autonomy” to define or qualify particular
types of systems has not provided a single unified structure of characteristics
that can be used universally to distinguish a system as “autonomous” or not.
The research literature shows clear divergences when describing autonomous
systems. Specifically, in the context of manufacturing assembly systems, B.
Scholz-Reiter et al [11] mentioned autonomy as the independence of a sys-
tem in making decisions by itself without external instructions and performing
actions by itself without external forces. However, this definition is often con-
fused with the concept of automation systems that are designed to carry out
independently tasks and even process local information along pre-programmed
supervised tasks without human intervention [14][22]. In an effort to distinguish
autonomy from automation in the chemical process industry, Thomas Gamer
et al [14] indicated that the act of progressively handing over more and more of
these automation processes to the system is defined as a gradual transformation
to autonomy, which does not take into account the self-governing characteristic
of autonomy according to Kant’s philosophy. In the field of logistics, Katja
Windt et al [9] pointed out that the ‘control’ aspect of autonomy in logistics
systems is commonly used to refer to the ability of logistic objects to process
information, and to render and execute decisions on their own. In the con-
text of a machining manufacturing system, Hong-Seok Park et al [15] defined
the broader ability of autonomy as an ability of human, robots, or software
to achieve its goals without any support from the others while the interaction
among them represents social ability of the system to achieve its global goal.

There is a lack of universal consistency regarding the definition of autonomy,
its features and requirements, and how they are qualified in different research
and engineering domains. High-level text definitions of autonomy may exist, but
they lack the precision required and do not break autonomy down to define the
requirements. Some models have been made to qualify and capture autonomous
completeness based on autonomous ’levels’ which are defined as the extent
at which autonomy exists on a continuum ranging from no autonomy to full
autonomy [23, 24]. These models come closer to a functionally useful definition
of autonomy for distributed manufacturing intelligence. One of the models
proposed by Beer et al. [23] uses five stages on the assessment of the whole
factory, but a more detailed description of the levels of autonomy is required to
support the industrial application and transition [25]. This is especially true in
the manufacturing context as the implementation of autonomous systems could
have a substantial impact on productivity and cost reduction [10, 26].

Therefore, this work aims to offer a unified definition of autonomy in the
manufacturing context as a framework for both industry and research. This is
achieved by: (1) providing an analysis on the state of the art regarding auton-
omy definitions in different manufacturing contexts (2) identifying similarities
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and differences in the definitions, (3) defining the common features of auton-
omy, (4) and harmonizing these features into a five-stage model of autonomous
manufacturing. This model defines autonomy from the manufacturing perspec-
tive and comprises enabling features associated with maturity levels providing a
comprehensive appraisal of manufacturing systems from the as-is stage, through
distributed manufacturing approaches, and to full autonomy.

The following section (2.2) will clarify the concepts of automation and au-
tonomy and then discuss how autonomy is portrayed in different engineering
perspectives. Section 2.3 presents and analyzes the key requirements and fea-
tures of autonomy, which subsequently forms a five-stage model defining levels
of autonomy associated with maturity levels for each autonomous feature in
Section 2.4. This model is the definition of autonomy for manufacturing, and
aims to facilitate the complete identification and evaluation of autonomous
manufacturing systems. Finally, the last section (2.5) presents the conclusions
and future work perspectives with regards to the model.

2.2 Objectives of Autonomy

In general terms ‘Autonomy’ can be defined as the capability of individual
entities to collaborate, implement, and direct towards achievement of a specific
goal without any external influence [9] under its own laws and control principles
[27]. In etymological perspectives, this concept is embedded in the aptitude of
individuals to take independent decisions or self-government (i.e. the ability of
one to dictate oneself his/her own law) [27].A conjecture in this view is that
higher the level of uncertainty and the ability of the system to adapt to it, the
higher the level of autonomy.

[28] defines autonomy as a design goal that can be considered as the abil-
ity of a system to function independently, subject to its own laws and control
principles. [10] give the definition of autonomy as the capability of an entity to
create and control the execution of its own plans and/or strategies. According
to [15] autonomy allows the system to respond and recover without modifying
scheduling. Autonomy is an ability of the agent to achieve its goals without any
support from the other agents. [16] describe autonomous systems as intelligent
machines that execute high-level tasks without detailed programming and with-
out human control. They know their capabilities and their state. They are able
to decide between a set of alternative actions, orchestrate and execute skills.
Autonomy is defined as the ability of an entity to structure its own action and
environment independently and without unwanted influence from the outside
[29]. It is the ability of a system to make its own decisions and to act on its
own, and to do both without direct human intervention [30].

Some authors have developed a scale to try to measure the degree of au-
tonomy quantitatively [29] by measuring the number of decisions taken by the
system or entity on its own, or by establishing levels of autonomy according to
different criteria accomplished by the system [9]. Based on those characteristics,
a high-level definition of autonomy could be assembled for the manufacturing
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field as the capability of an entity to locally make decisions derived from rea-
soning on its current situation and previous knowledge, planning a strategy,
and executing necessary measures to achieve the desired outcome.

2.2.1 Automation or Autonomy?

As seen above, many authors give a general definition of autonomy including
a key element of the ability of the entity to achieve its goals without external
influence, be it human or from other agents. However, this can and sometimes
does create confusion between the concepts of automation and autonomy.

Automated devices execute actions determined by a predefined set of rules
to produce an outcome, with minimum or no human intervention [26, 31],
so only foreseen outcomes resulting from the execution of a plan based on
sequential logic are possible [17, 19, 26, 31, 32]. It is expected that if these
devices deploy in an unpredictable environment, their fixed plans will rapidly
encounter limitations. Autonomous individuals (commonly human workers)
which exhibit higher intelligence and flexible behavior would be required in
these situations, that is the reason why autonomy is understood as one step
beyond automation [19, 33, 32].

The key differentiator is the ability for an autonomous entity to face unan-
ticipated situations and adapt its course of action as they appear [20, 31], which
is enabled by their self-determination and cognitive capabilities [34]. Domain
knowledge acquired through learning provides them with implicit intelligence
[17, 26, 33], and a high level of understanding [31, 26] and allows them to take
conscious decisions to accomplish their goals [33]. Thus, the closer an entity
approaches full autonomy, the smaller the role of any external agent in its op-
eration will be (Figure 2.1). In the specific case of humans, this could become a
two-edged sword because as the system becomes more independent and reliable,
the less aware and prepared the operator would be to take over control, which
is referred by [17] as a critical barrier to autonomy.

Latest technological developments (e.g. autonomous driving, unmanned
aerial vehicles, and artificial intelligence) have raised critical concerns about
the extent to which autonomy should be developed or even allowed in systems,
and the same concern applies to the participation of autonomous entities in
production systems [31, 33, 32]. Defining the upper limits of autonomy in
intelligent systems is a complex task at the current technological stage, as the
challenge is to develop an autonomous system in which the human would still
be able to regain control in exceptional situations [35], that does not represent
a hazard, and which “can co-exist with people, and be trusted, safe companions
and co-workers” [26, pp.3]. Additionally, the intelligence and self-government
characteristics that a fully autonomous system could achieve raises concerns
beyond human safety to more complex ones like liability, moral accountability,
ethics, decision responsibility, privacy, and security issues [36, 37].
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Figure 2.1: Progression from automation to autonomy

2.2.2 Application of Autonomy in Engineering Domains

The term autonomy has also been quite fluidly used in industrial engineering
applications beyond manufacturing, and is generally used to describe a means
of controlling and directing a certain functionality of the system without hu-
man intervention. A significant rise in autonomy applications in engineering
applications have been witnessed, and the development of autonomous vehicles
in particular, autonomous robots, maintenance, processes and quality systems
has seen major progress in the research. We discuss this developments here to
determine what progress can be applied to the manufacturing domain.

Common motivations for autonomous industrial applications lies with eco-
nomic, performance, and human safety aspects [33]. [33] argues that such
possibility of autonomy in automation is only followed with a certain degree
of ‘consciousness’ i.e. ability of the system to be ‘aware’ of its environment
and context along with a deliberation capability of its information processing
priorities.

Unmanned Aerial/Underwater Vehicles

The application of autonomy has been especially significant in the area of un-
manned vehicles [38]. The very first Autonomous Underwater Vehicle (AUV)
came into existence through the work of Washington University [39]. The Self-
Propelled Underwater Research Vehicle (SPURV) was designed for underwater
exploration and acoustic communications. Functionality has been expanded
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with higher sensor payload capacities and longer endurance while controlling
the container size. A Norwegian team has developed an AUV for detecting
gas leaks and chemical underwater discharges while keeping the solution cost-
effective [40]. The application of autonomy in underwater vehicles has expanded
to the areas of coastal area monitoring, scientific explorations, military appli-
cations, offshore mining and seafloor mapping [41][42][43] .

Beyond underwater applications there have been significant strides in au-
tonomous aerial vehicles with examples helping to investigate changes in
Antarctic ice shelfs which has a direct relation with climate change and global
warming [44]. In general aspects the autonomous flying functionality in vehi-
cles is actually remote controlled drones with pilot assistance features. Boosting
flight performance, protection in hazardous and risky works, and cost optimiza-
tion [45] have been popular areas of autonomy application in vehicles. In all
of these applications, barriers and challenges include limited applied autonomy,
and operational bandwidth [46] which limits communication to a specific range
or at the start and end of operation. Expensive maintenance and program-
ming for highly reactive decision making in uncertain environments [47] are
prominent drawbacks in autonomy realization in this areas. Time and energy
restrictions are other problematic aspects that the machines should wisely man-
age by controlling their resources to achieve extended autonomy [47]. In the
case of unmanned aerial and underwater vehicles the concept of autonomy is
primarily the main driving factor for further research [38].

Figure 2.2: Transition from Human Driven to Self-Driven- A simplified repre-
sentation of SAE J3016 Automation Levels [36]

There has been significant rise in demand of autonomous vehicles that can
be smart enough to not only manage their own functions but also interact with
other equipment, monitor and store information while maintaining sustainable
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working conditions [36]. Initially the role of autonomy in these use cases was
focused on removing the need for a local operator thereby subjecting these
equipment to much harsher environments than possible by humans [45]. There
exists significant gap between ensuring full autonomy in vehicular systems and
the control system required to implement it [46]. A limitation of research done
in this area is maintaining the focus on one or more aspect/feature of autonomy
while ignoring others.

Figure 2.2 shows the SAE J3016 Automation Levels which define the levels
of autonomy in vehicles, from human operated to self-driven. The levels are
defined from 0-5 with ‘Level-0’ being associated with human-driven to ‘Level-5’
where no interaction happens between human and vehicular control. The most
important aspect in the figure is the transition from Level-3 to Level-4 where
the balance of autonomy moves from humans to the vehicle itself

Autonomous Robots

Most robots such as industrial robots (KUKA, ABB, Fanuc, among others),
humanoid robots (e.g. Atlas[48], Archie, Asimo), consumer robots (such as
automated vaccum cleaners), disaster response robots, and many others require
energy management as these are typically battery powered. [49] established a
case of energy autonomy in autonomous robots developed from the concept
of ‘potential energy’, where actions are constrained by remaining energy and
relational distance among individual robots. The robot as an adaptive ’agent’
(i.e. an autonomous entity) reacts to the changes in the environment while
cooperating in a network of robots to achieve energy autonomy.

The energy conservation strategies in autonomous robots presents a case
for the employment of multi-agent systems [50]. Each agent in this system
has a belief-desire-intention (BDI) software architecture where each agent is
responsible for energy conservation as a ‘desire’ and co-ordinates with other
agents to achieve this goal. It could be argued that if desires are predefined
in the system then does this make the system autonomous? An autonomous
system in the case of robots could develop its own desires and should have the
authority to enforce it by evaluating the environment it interacts with [51].
Realistically an autonomous robot can only be truly autonomous if it achieves
an outcome with minimal external assistance.

The goals that drive the robot or control its behavior are associated di-
rectly with the main constituents of a robotics system - perception, actuation,
and decision making (Figure 2.3)[52]. ‘Perception’ is concerned with observing
the environment with equipment like laser scanners, vision cameras, and other
sensors that serve to input the current environment state into the system. ‘De-
cision’ involves locally selecting the best operation to match the goal of the
system. ‘Actuation’ involves equipment such as robotic arms, wheels or tracks,
or other manipulators that allow the robot to act on the decision and change
its environment to achieve its goals.
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Figure 2.3: The main constituents of autonomous robots - perception, deci-
sion,and actuation all driven by the robot’s goals

Autonomous Maintenance

Autonomous maintenance reduces the need for human intervention in main-
tenance operations for dangerous and dirty environments, and helps improve
the perception of the task to one of cost savings and productivity [53] . Au-
tomated maintenance is different to automation within manufacturing as the
maintenance operations possess a different set of characteristics. Maintenance
operations are considered to be non-deterministic (age, usage or other factors
of the asset can affect the duration between required maintenance), usually
non-uniform (multiple failure modes and the condition of the asset will de-
fine the actions required) and highly irregular (varying levels of unplanned and
planned activities) which makes the scheduling of maintenance for autonomous
equipment especially difficult.

The application of autonomy in maintenance operations is geared towards
non-destructive testing (NDT) and inspection (NDI). Pipe Inspection Gadgets
(PIGS) offer some level of autonomy during industrial maintenance of pipes, as
pipelines can restrict wireless communication [54]. Some solutions have been de-
veloped to detect cracks along pipe infrastructure that utilizes fully autonomous
robots capable of performing assigned tasks autonomously [55][56]. Aircraft oil
delivery tube crack detection has also seen employment of autonomous robots
for routine inspection of fatigue cracking [57] by using magnetic flux leakage
and eddy current array techniques. Movable pipe robots have been developed
that utilise electromagnetic stabilization to grip surface before inspection [58].

Hazardous environments such as nuclear plants require mobile autonomous
equipment [59][60].Such robotic applications have also been extended to ship-
hull welding, steel bridge inspection, and nuclear power plants fault detec-
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tion[61][62][63]. Building maintenance and surveillance is an important but
mundane task that is a clear opportunity for autonomous systems, and au-
tonomous robotic maintenance systems have been developed wherein robots
roam throughout the building, use RFID tags to collect and relay information
to centralized maintenance center thereby increasing efficiency and reducing
labor costs [64]. Such is also the case with power distribution line maintenance
where autonomous robots were developed to perform the task [52]. The robot
receives an instruction from the operator and plans its trajectory to perform
the task using image processing, feature recognition, and planning algorithms.

The availability of historic data to make informed inferences is the primary
enabler of autonomous maintenance [65]. Correct data is essential for drawing
accurate results. The historical insights gives the likelihood a of a state, and
a possible distribution for future predictions.A huge research area explored in
this domain is to converge the gap between the estimated, predicted, and actual
states of the equipment [66]. This will help in predictive and remaining useful
life (RUL) estimations.

Figure 2.4: Steps of Autonomous Maintenance with Total Preventative Main-
tenance

Total Preventive Maintenance (TPM) [53] outlines the main steps to com-
plete maintenance operation. ‘Initial cleaning’ involves dealing with equipment
problems and performing actions to eradicate current existing equipment is-
sues (like lubrication and tightening). ‘Tackling Issues’ goes upwards a level
by focusing on the issues that contribute to the problems and reducing them
by implementing formal processes. Based on these issues tackled the next step
is driven by ‘provisional standard’ development for in-house maintenance at
periodic intervals followed by empowering the automated equipment to inspect
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and monitor itself. This introduces the concept of autonomy in maintenance
application. The compliance with international standards for maintenance en-
ables accurate and compatible data recording, material movement, control and
quality assurance. This in turn leads to ‘self-management’ (Figure 2.4).Self-
management in maintenance are derived as actions that could be controlled
by machine/equipment itself to improve its condition, maintain or restore to a
specific condition.

Autonomous Processes

Research in autonomy in the process industry has taken inspiration from re-
search in the self-driving automotive domain to develop a definition of autonomy
focused on plant operators [67]. This is further refined by work of [68] into a
taxonomy of autonomous key features. Smart manufacturing has been seen as
an enabler for digitalizing and automation in industries like chemical, petro-
chemical, and pharmaceuticals but the lack of modern cyber-physical systems,
interoperability, and flexible architectures present challenges to its application
[69][70]. [71] builds on this foundation and details the challenges in the smart
process industry as well as into topics of communication, interconnection, un-
certainty, robustness and, predictability from data. The works present the case
that opportunities and challenges are not limited to production only but to the
extended supply chain.

Autonomy in this application is used to maintain the effectiveness of con-
tinuous process [14] despite variation and uncertainty in the supply chain [71].
An autonomous process may fail to act to its full capacity if it gets restricted
due to a lack of materials or resources, and research focuses on improving this
resilience and robustness.

Figure 2.5: Levels of autonomy in process industry from conventional to au-
tonomous process

Figure 2.5 defines levels of automation in process industry from Level-0
to Level-4. Level 0 has no automation presence. As the automation level
increases the control of process parameters increases and becomes more intel-
ligent, and is enhanced by advanced process control and expert systems. The
semi-autonomous systems permit remote operation and use of digital twins.
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Full autonomy is achieved at Level-4 by integrating artificially intelligent au-
tonomous decision making and control for self-optimization, troubleshooting,
and self-management of the process plant.

Autonomous Quality

Intelligent quality systems derived from work of [72] utilize networked machines
capable of formulating quality functions and automated analysis for improving
quality in production systems. ‘Quality 4.0’ builds on the increasing digitalisa-
tion of manufacturing and applies the Total Quality Management (TQM) ap-
proach enhanced with artificial intelligence, machine and deep learning, and be-
comes integrated with statistical process control [73]. [74] describes how modern
quality systems can utilize seven tools and technologies for quality management.
These are data science and statistics, enabling technologies (Industrial Inter-
net of Things, integrated systems, cloud computing, and augmented/virtual
reality), big data, blockchain, machine learning, neural networks, and deep
learning.

The case of automated quality has gained significance especially with de-
velopment of machine learning and deep learning models [75]. Machine vision
integrated with quality control has also brought about significant impact to
traditional go / no go scenarios [76]. The modern quality systems are increas-
ingly utilising autonomous infrastructures to maintain strict statistical process
and quality control (SPQC). Quality assurance frameworks that enforce qual-
ity control standards are required to be built-up to align themselves with strict
codes of autonomous quality control [74]. Increasing competition in the mar-
ket and demand for customized products has required manufacturers maintain
increasingly strict quality standards aided by autonomous systems to produce
high quality varied products.

Figure 2.6 shows how autonomous quality control influences different phases
of manufacturing execution. The more advanced the level of autonomy, the
more predictive quality control in the production process can be performed.
Preventive maintenance is the regular upkeep and calibration of processes to
prevent failures and maintain quality , reactive maintenance is the adjustment of
processes as they are performed to maintain quality, and predictive is adjusting
processes for the process begins to maintain quality. The earlier the quality
control is performed, the fewer parts will need to be scrapped or fixed, improving
productivity [74].

Autonomous Information and Communication Technology (ICT)

Deep learning has contributed to autonomous system development through
rapid developments in computer vision, acoustics, tracking, natural language
processing and pattern recognition [75]. Improved computing capabilities has
enabled the increasing accessibility of advanced machine learning models and
processing. A good representation is the rapid progress in the development
of unmanned ground and aerial vehicles and medical application robots due
to new powerful computation frameworks like Caffe, Theano and Tensorflow
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Figure 2.6: Autonomous Quality Control at different manufacturing phases:
preventive, reactive, and predictive

[77]. These have helped in building novel and robust unmanned autonomous
systems. Machine learning capabilities provide perception and control capabil-
ities that can mimic human interaction. These learning domains are aided by
sensory perception guided by models to transform information to abstraction
levels that map the environment [78]. Object detection [79][76], classification
[80] and semantic understanding [81] relate to the vision abstraction that uti-
lizes convoluted pooling of neural network layers for a multitude of machine
learning tasks. These methods generally promote the independence of entities
within its system and associated systems [82].

The development of new learning algorithms and applications have brought
about a push in the digitalisation of industrial sector, particularly for areas
and problems which were previously considered too complex to automate. This
push in digitalisation of industrial sector requires the development of com-
mon standards and management frameworks and architectures however. ICT-
enabled manufacturing management frameworks like ARC Advisory Group’s
Model [83] and the International Society of Automation’s ISA95 Enterprise-
Control System Integration hierarchical models [84] have been developed to
meet these requirements [85]. These Architectures, standards and protocols for
autonomous systems lay the foundation for autonomy implementation [86], but
a pivotal gap in this domain is the lack of practical proven applications of these
developed paradigms.

Distributed Manufacturing

On the production floor, distributed manufacturing intelligence can reduce
setup times by planning or through reactive control, and reduce machine break-
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downs by implementing TPM with machine data acquisition and status infor-
mation monitoring. [18]. Proper tracking and tracing of objects (with au-
tonomous identification technologies, proper marking, and storage and buffer
size allocation), effective warehouse management (enabled by Manufacturing
Execution Systems (MES) and Enterprise Resource Planning (ERP) systems),
and fast fault detection (a combination of software checking of data values and
statistical process control) are further aspects of this approach that benefit the
manufacturing shop floor [18].

The rise of modular, flexible, and reconfigurable manufacturing systems
has led to further developments in distributed intelligence such as holonic
manufacturing environments [87] and the autonomous adaption of manufac-
turing systems to unexpected changes [88]. Multiple architectures such as
ADACOR (Adaptive Holonic Control Architecture), PROSA (Product Re-
source Order Staff Architecture), HCBA (Holonic Control Based Architecture),
ORCA(Orchestration and Reconfiguration Control Architecture) and POL-
LUX. have been developed that target improved flexibility, emergent behavior,
new application domains, connectivity, and adaptability [13].

To realise autonomy within a distributed production environment the facil-
ity should support dynamic operations, dynamic prioritization, task migration
and hierarchical restructuring [89]. Manufacturing system monitoring is essen-
tial to ensure quality requirements are met, the minimization / maximization
of objectives is achieved, and faults are diagnosed and fixed. An autonomous
facility would require effective control principles with an adaptive capability for
accuracy, fault detection and identification [28].

Figure 2.7: Steps to Autonomous Manufacturing from basic computerization
of tasks to adaptation of digitisation in manufacturing industry

Production systems are assumed to be autonomous if they are able to per-
form their tasks without external influence [90]. However, a production system
is a group of associated processes [69] and these processes collectively produce
an output by having raw material or parts passed through each processing stage.
Each of these processing stages may be a single production step with a single
machine producing a finished product or may be a group of processes cumula-
tively involved in such an endeavor [18]. If each station simply performs a task
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independently of the others this is decentralised manufacturing control. If the
stations share data on their status to make local decisions this is distributed
manufacturing intelligence. However, true autonomy can only be achieved if
autonomous control is established at a ’higher’ level with a view of the whole
system. Autonomy is not only restricted to processes but also extends to the
components coming and leaving the system, and some of the components or
processes may also be sub-contracted. To ensure complete synchronous re-
silient autonomy it is essential to maintain end to end autonomy [91, 15], and
a major challenge in manufacturing is maintaining such level of autonomy all
at levels. Production process are often highly distributed [87, 88]: some parts
may be produced at one facility while other at completely different in another
region (this is the second definition of distributed information - see contextual
note in Section 1).

Case of Autonomy by Objective

Figure 2.8: The business objectives driving autonomous behaviour in engi-
neering applications; the figure gives an overview of research and trends in
autonomous engineering applications
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Table 2.1: Features and required functionality of an autonomous production
system - Further explained in Section 4

Features Description

Data Management Structure, data processing, and integration capa-
bility of production systems

Knowledge Management Ability to manage, deploy, and exploit acquired
knowledge

Interoperability Hardware and software compatibility

Synchronisation Material and logistical physical synchronisation
in system

Functionality Mapping from Input (X) to Output (Y) and mov-
ing from explicit to implicit events for reaching
autonomous behavior.

Optimization Maximizing an objective function, typically in-
creasing productive and reducing unproductive
contribution

Decision Making Moving from human decisions to independent de-
cision making and execution

Reliability Ability of system to maintain designed function-
ality and fault recovery

Context Awareness Self-awareness of the system’s physical, virtual
and user environment

Interaction Interaction between components, including parts,
machines and humans in the production environ-
ment

Safety and Security Protection of the system and humans from
threats

Connectivity Production system’s ability to connect its ele-
ments to different network types (centralised or
decentralised)

Control Management of the operation of production sys-
tem

Adaptability The ability of a system to adapt to sudden
changes
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Configuration Management of the system structure, including
aspects of modularity, scalability and convertibil-
ity

Learning Ability to evaluate information and experiences,
and direct future behaviour

Accuracy Identification of true positive/true negatives from
false positive/false negatives

Stability Ability of a system to maintain pre-defined stan-
dards and expectations in different environments

Certainty Ability to be certain of measurements of opera-
tion

In all of these examples of autonomy research and practice, the final outcome
(i.e. the objective) is the component that drives the use of intelligence in the
system and the system can be compromised in the favour of result.If such a case
the system has to be remodeled to map the desired outcome. This is mainly
due to lack of standards and frameworks present to support the system thus
maintaining integrity while achieving consistent results.

Different autonomous application will require different features to achieve
their objectives. For autonomous vehicles the objective is the ‘functionality’
as the basis of autonomic behaviour. ‘Efficiency’ and ‘interactions’ are the
most important aspects of autonomous robots. Autonomous maintenance on
the other hand anchors the use of ‘historical data’ and ‘measurement’. Main
driver for autonomy in process applications are ‘adaptability’ and ‘repeatably’
whereas in quality the autonomy is catered in the process to ensure ‘accuracy’
and ‘reliability’. ICT aspect deals with the ‘knowledge’ attribute of autonomy.
Manufacturing further builds on the concept with focus primarily on end-to-
end ‘synchronisation’ thereby controlling the manufacturing process. These
derived features along with others lead to our general concept of ’Autonomy in
Manufacturing’ (Table 2.1) discussed in Section 4.

2.3 Models of and Requirements for Autonomy

Autonomy is becoming more and more important. In this section, models and
requirements of autonomy will be introduced

2.3.1 Key defining aspects

Autonomy is a multidisciplinary concept, and accordingly a multidisciplinary
approach must be considered to achieve a successful deployment of autonomous
system in a manufacturing context. Autonomy covers aspects from digital tech-
nological developments, to business concerns. The main key defining aspects
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and requirements to increase robustness against environmental complexity and
dynamism are defined by[18] as: i) Humans and their interactions with the en-
vironment and systems; ii) Available machines and knowledge of the processes;
and iii) Software entities and algorithms for decision-making. A holistic view
of autonomy is achieved either by association of all of these requirements and
associated enablers working together collaboratively or independently, and we
now discuss these requirements in more detail.

Human role in autonomous systems

Even though a fully autonomous system that reaches the specified goal indepen-
dently and without any human intervention is a design goal [28, 16, 92, 93, 9],
many authors agree human intelligence and intervention remains key because
of the safety, security, and bias issues posed by such systems [92, 93, 94, 95, 96,
97], and there is a need for keeping humans informed, enabling consent, and
offering scope for intervention due to ethical reasons. Those issues have been
quantified and reported in several publications in different fields to clarify the
need for possible human intervention. In the context of surgical robots, 10,000
robotic-surgery-related adverse issues were recorded to the U.S. Food and Drug
Administration (FDA) between 2011 and 2013, and the majority were due to
malfunctions in the robot control system and instruments [98]. There have been
major accidents related to autonomous cars due to them encountering new and
ambiguous situations [98, 99].

While machines are good at tasks requiring fast computations, reacting
quickly to known situations, and finding patterns in massive amounts of data,
humans are good at resolving these new and ambiguous situations. Autonomous
systems will require human support to guarantee correct, complete, and safe
behaviour in all situations for the near future at least. Therefore, humans,
machines and software must interact and collaborate to achieve the desired
outcome [97, 100].

R. D. Alexander et al [101] defines the following possible human roles in
autonomous systems:

1. Human as a Safety Function: human intervenes in the operation of
the autonomous system when safety problems arise, acting as a safety
function.

2. Human does What Autonomous Systems Can’t Do: human per-
forms tasks that cannot be automated due to technological limitations.

3. Human as Necessary General Intelligence: human performs tasks
that require judgement, interpretation, and general human-level intelli-
gence.

4. Human as Mediator and Liaison: human acts as a translator and
interpreter between autonomous systems and other humans.

5. Human as Maintainer: human maintains the autonomous system when
it is required.

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

24 (115)



DiManD Deliverable D4.1

6. Human as Peer: human acts as a peer who cooperates with an au-
tonomous system to achieve shared tasks.

7. Human as Rescuer: human rescues an autonomous system when it is
immobilised or otherwise disrupted.

As illustrated by Figure 2.9, when the autonomy level of the system increases
the role of human shifts from low-level and ’4D’ (dangerous, dirty, difficult,
and dull) tasks to high-level and safe tasks [93, 33]. The human role can be
broadly categorized into human-in-the-loop and human-on-the-loop systems in
autonomous systems [93]. A human-in-the-loop system is a system where a
machine executes a task while informing the worker, and may stop for human
commands before continuing. A human-on-the-loop system is an autonomous
system that executes the specified task independently and completely, and the
role of a human in such systems is to monitor and to interfere if it is necessary.
A high level of autonomy should not imply the exclusion of the human but
allow for a seamless integration, both in the operational levels of controlling
the process and to strategic levels of defining the aggregate plan, leading to
higher levels of collaboration to achieve the common key performance indicators
derived from manufacturing objectives [24, 102].

Figure 2.9: A description of possible human roles in autonomous systems

A substantial amount of work has been done in the context of human-in-
the-loop systems [97, 103, 104, 105, 106, 51, 107, 108, 109]. [97] identified the
technological challenges and limitations of integrating humans into the Cyber-
Physical System autonomy loop. The Authors defined a conceptual framework
that identifies the aspects that must be taken into consideration to design hu-
man participation, from both an abstract and engineering point of view. [103]
developed a conceptual, technical road-map of autonomous pollination for fu-
ture farming using micro-robotic air vehicle pollinators that are implemented
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using a combination of artificial intelligence and human expertise in-the-loop
for the smart agricultural industry. [104] provides a theoretical framework and
the conceptual instruments necessary for analyzing and understanding interac-
tions with autonomous entities. The authors analyze the complex scenarios in
which a cognitive agent has to decide if and how to delegate or adopt a task
for another agent in a given context, how much autonomy is necessary for a
given task, how trust and control play a relevant role in this decision, and how
important their relationships and reciprocal influences are. [105] establishes
an open prototyping platform and a design framework for rapid exploration
of a novel human-in-the-loop application. The authors discuss the applications
and challenges of human-in-the-loop Cyber-Physical systems. [106] proposes an
approach to synthesize control protocols for autonomous systems that account
for uncertainties and imperfections in interactions with human operators using
Markov Decision Processes and stochastic two-player games. They demonstrate
the applicability of the approach via a detailed unmanned aerial vehicle (UAV)
mission planning case study. [51, 108] shows that human-in-the-loop robot
teaching is effective in teaching robots to perform dynamic manipulation tasks
in cooperation with a human partner; thus the robot simultaneously learns the
action policy of the tutor and through time gains full autonomy.

Distributed Control Technologies for Autonomy

Traditional control architectures are based on hierarchical and centralized sys-
tems, focused on robustness and characterized by structural rigidity. This de-
sign approach gains in complexity as more tasks must be controlled i.e. higher
numbers of interactions between the different components must be used to con-
trol the variety of functions executed [110]. In contrast, the objective of Au-
tonomous Control is the realization of increased robustness and productivity of
the entire system by correctly responding to dynamic and complex situations,
but without increasing the overall system complexity. Machine autonomy is
based on a processes of decision-making in heterarchical structures directly fed
by raw data, digested, and turned into valuable information [111, 18].

The collection of this raw data is supported by the Internet of Thing (IoT)
concept [4], and the related concept of the Industrial Internet of Things (IIoT).
The goal is to avoid isolated systems based on proprietary solutions, and to
enable data sharing by adopting common communication protocols that enable
efficient and ubiquitous information aggregation and availability from the phys-
ical system [112]. Communication technologies can be divided into wired and
wireless technologies, and different technologies are used to balance the follow-
ing demands: i) high transmission rates, allowing large volumes of data to be
shared; ii) high area coverage such as those encountered on a manufacturing
shop floor; iii) low latency, to enable real-time applications (human-machine
collaboration, remote real-time control); iv) large numbers of connections as
the number of nodes grow exponentially; v) high reliability, especially for wire-
less technologies due to their high rate of package lost; and vi) high security,
unsafe communication technologies may serve as an easy access point to mali-
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cious attacks and important data leakages [113]. However, the IIoT concept not
only refers to the massive network of interconnected and heterogeneous devices
(sensors, controllers, actuators, often referred to as operational technology),
but also all the surrounding systems required to the management at upper lay-
ers (software data systems, often called information technology). High levels
of abstraction try to describe a reference architecture for either IoT and IIoT
deployment, based on their application context. A widely accepted three-tier
pattern is presented in (Figure 2.10) [114].

Figure 2.10: Three-tier IIoT hybrid architecture as a reference for IoT de-
ployment in manufacturing to enable massive data gathering in autonomous
systems. The proximity network collects data from edge nodes, forwarded over
the access network to the platform tier, which processes the data for forward-
ing to the enterprise tier. The access network also processes and relays control
commands from the enterprise tier back to the edge tier as well. The service
network is used to communicate with the enterprise tier, which provides end
users interfaces, control and domain-specific applications. Adapted from [114].

For better and effective decision-making, early studies highlighted the im-
portance of knowledge representation, though the development from a single
and unique model to multimodel-based strategies as industrial systems gain in
complexity [33]. Models are explicit representations of the dynamics and re-
sponses of systems (linearly or non-linearly, statically or dynamically). Depend-
ing on the system being modelled and the objectives of the model, models are
developed from first-principles understanding of the physics, from the captured
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understanding of expert personnel, or directly from empirical data. The more
complex a system is, the more dimensions and variables are involved and thus
the more complex the model will be, or the larger the number of interconnected
models required. The trend in industrial control is to increase the amounts of
knowledge (in the form of models) to better understand system behaviour and
to predict its future state. The improvements in dynamic resource manage-
ment technology to allow multiple, competing, and heterogeneous computation
tasks would permit the execution of multimodels on real-time platforms. In
this context, Digital Twins (DT) are a core enabler of autonomy and key for
achieving a new level of flexibility in Cyber-Physical Systems (CPS) [16], as the
DT concept represents a standard framework or base for the deployment and
real-time execution of different models [115].

DT was first presented as conceptual model for a virtual or digital repre-
sentation equivalent of a physical product that includes the real space, virtual
space, and the data and information flow between the two spaces. The inter-
connection and interoperability of the physical and the cyber world is a key
aspect in its framework development and implementation for real-time opera-
tion control [50]. Since its first definition, DT properties evolved stating the
following [116]:

1. It is at some level a replica of a real thing - the “physical twin”.

2. It is a digital representation stored on a computer.

3. It has a purpose of impacting an aspect of the environment in which its
real counterpart exists, usually by serving one or more DT clients. It may
have direct control of the physical twin, or act in an advisory role.

4. It uses models and simulations to achieve its purpose.

5. It incorporates some level of subject matter expertise in the solution.
Some efforts illustrate that the combination of subject matter expertise
and data provides more effective, robust and stable solutions in many
manufacturing domains, than purely data-driven solutions.

6. It uses real-time data gathering to maintain the synchronization with its
real counterpart.

Software and agent systems

Software systems may be implemented at all organizational and automation
levels: from the lowest field levels of a shop floor, to the top managerial business
levels [18, 117]. For instance, Autonomous Production Control (APC) methods
used for control and resource management tasks based on different production
scenarios [117, 118].

Together with DT models, another key technology for improving the per-
formance in manufacturing systems is Artificial Intelligence (AI) [119]. AI ap-
plications based on machine learning (ML) are accepted as promising technolo-
gies in manufacturing, evolving the concept from ’Intelligent’ Manufacturing to

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

28 (115)



DiManD Deliverable D4.1

’Smart’ Manufacturing which is knowledge-based and data-driven [120, 121].
ML techniques can be used to abstract high-level representations from large
amounts of data, to assist decision making based on predictions – learning from
those huge amounts of data. In this sense, learning processes may be classified
as [122]:

1. Supervised learning: The correct response is provided by a teacher
with experience of the problem.

2. Reinforcement learning (RL): Only an evaluation of the chosen action
is given by the teacher.

3. Unsupervised learning: No evaluation of the action is provided, since
there is no teacher. The system must self-evaluate.

From a computation perspective, the implementation of smart systems is led
by the use of Multi-Agent Systems (MAS) [123]. Each agent (which is a soft-
ware entity), represents fundamental processing units [124], i.e. manufacturing
resources, that build systems with cognitive capabilities and self-* behaviours
such as self-awareness [125], self-organization [126]. These aspects enable as
quick reactions to unpredictable perturbations [127] while increasing trustwor-
thiness [128] and improving desirable properties in systems such as autonomy,
responsiveness, redundancy, distributedness and openness. Centralized, hier-
archical control architectures are replaced by loosely connected agents which
focus on the control level, that not only offer a convenient way of controlling
processes distributed over space and time, but as previous discussed enable the
control of highly complex systems as a decentralized solution based on local
decision making [129]. However, it is correspondingly more difficult to pre-
dict overall system behavior. MAS may be classified as either a) a centralized
multi-agent coordination, in which a central agent undertakes the collection of
partial plans, combines them and solves possible conflicts or b) a decentralized
multi-agent coordination, in which agents communicate with each other for the
creation of their plans and solution of possible arguments [50].

Autonomous behaviour can be implemented by swarms of cognitive agents
(i.e. agents with AI techniques) [127] as well as other state-of-the-art design
patters as well [131]. [119] proposes a framework that supports cognitive appli-
cations through linking a CPS with its DT in a closed-loop approach sharing
both data and models. [130] provide a reinforcement learning-based intelligent
agent (see Figure 2.11) which faces the problem of robotic control and human-
robot interaction within manufacturing, presenting the potential for distributed
agents to improve the adaptability of the system.

2.3.2 Existing Models and Level Definitions of Autonomy

References for the definition of autonomy levels in manufacturing

Research and standards in autonomous vehicles (e.g. self-driving cars) cur-
rently uses a useful - although imprecise - classification to distinguish levels
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Figure 2.11: Reinforcement Learning (RL)-based Agent architecture for
decision-making within a discrete action space. The learning agent provides
adaptability and a autonomy via a control algorithm which generates instruc-
tions to adjust the operational parameters of robots in response to changes
from its environment and collaborators. From a mathematical perspective, RL
models a decision-making process based on a set of states, actions, and rewards.
These actions are selected based on a policy which maximizes the cumulative
sum of rewards as result of an optimum value function (Q-Score) which repre-
sents the quality of an action in a specific state. Adapted from [130].

of autonomy. There is a scale of five levels (plus a zero level) with level five
used for “full autonomy” with no scope for human interaction, and level zero
meaning no driver support systems at all. (Figure 2.12)

Compared to driving autonomy, Roland Berger developed the “Manufac-
turing Autonomous Level” (RB MAL) matrix to classify the level of autonomy
in a manufacturing system, alsoon a scale from zero to five. [133] The RB
MAL calculates this along the degree of automation (capability of production
equipment to perform a defined set of tasks) and the degree of control intelli-
gence (ability to orchestrate several production processes across multiple pieces
of equipment)[133]. In terms of the degree of control intelligence, level zero
involves completely manual and human-controlled operations, while level five
includes mobile robots autonomously performing complex production and the
use of production data to optimize schedules in real time. As for degree of
automation (which is vertical axis of RB MAL) level zero describes completely
manual operation, while level five includes flexible transportation of jigs, tools,
and consumables.

Using this matrix, the study found that the semiconductor industry has the
highest maturity levels, automotive suppliers are forward-thinking in terms of
automation but lag behind in control intelligence, and the aerospace industry
is still significantly behind[133]. By mapping out different industries on the RB
MAL, the study identified key technical challenges facing autonomous manufac-
turing. The lower the needed external intervention by humans or other systems
to achieve the goals under the uncertainties, the higher the degree of autonomy.
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Figure 2.12: SAE J3016 Levels of driving automation
[132]

Figure 2.13: Roland Berger’s Manufacturing Autonomy Levels [133]
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Application

By mapping different factories into the RB MAL, it is possible to gain a clear
picture of industry trends in autonomous production. While no industry has
yet reached level five, there are clear leaders – mostly those with a short plant
life-cycle and high volumes. The semiconductor industry has developed its
own approach to transform manufacturing facilities into smart factories, and
accordingly has the highest maturity levels. A significant number of automotive
original equipment manufacture (OEM) factories also show mature degrees of
automation and control intelligence. These companies drive innovation and
invest more in fully automated projects and facilities, such as Mercedes’ Factory
56; its new ’digital, flexible, green’ production facility in Sindelfingen, Germany.
[133]

Automotive suppliers are at a similar level to semiconductor fabrication in
terms of automation, but lag behind when it comes to control intelligence. This
is mainly because of their focus on the control of individual (customer) lines,
instead of the autonomous control of the whole factory. As a result of complex
structures and lower volumes, the aerospace industry is quite significantly be-
hind. Large-scale investments in smart digital factories only occurred recently,
with Turkish Aerospace Industries among the first to announce a smart factory
in 2019.

Reference models

In terms of levels in manufacturing existing research has defined an model the
connection between features and maturity levels. Features consist of manufac-
turing cell (automation, maintenance and autonomy), material information flow
(automation of the material flow, agility of the material flow, connectedness of
the information flow), development stages of entities (digitalization of entities,
biologization of entities), Worker role (work integration), factory organization
(cooperation between entities, versatile processes, structures and facilities, or-
ganizational form of the factory). [134] Five maturity levels are determined
for each feature in an existing model. (Figure 2.14) Each line represent the
corresponding maturity levels of the features in different stages of the whole
manufacturing system.

• Stage 0 : Analog Factory.

This stage represents the initial stage in the model and contains all those
factories in which neither automation nor digitalization have received any
significant introduction so far. Essentially, workers take over the tasks
that arise. Therefore, adaptable processes and a flexible material flow
must be emphasized due to the lack of automation.

• Stage 1 : Transparent Factory.

In comparison to the previous stage, this stage is characterized by con-
nected objects within the factory, an intelligent data connection of the
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equipment and a subsequent generation of information. The worker is
thus always aware of the current status of the factory.

• Stage 2 : Flexible Factory.

Uses partially automated manufacturing cells. The information collected
by decentralized networks can be analyzed and provides additional knowl-
edge about the condition of the equipment. A modularized factory struc-
ture with distributed generation of information helps the factory to oper-
ate much more efficient and flexible.

• Stage 3 : Semi-autonomous Factory.

Automated manufacturing cells act independently on this stage. A com-
prehensive ICT network within the factory enables the systems to make
decisions and creates changeable structures. The role of the worker pri-
marily is to control and optimize manufacturing processes.

• Stage 4 : Autonomous Factory.

With the final stage, the holistic autonomous manufacturing system is
reached. The manufacturing facility, which is distinguished by its adapt-
ability, requires ICT networking (also beyond the production environ-
ment) and autonomous sub-systems. The worker takes over the function
of the orchestrator of the factory.

2.4 Defining Model of Autonomous Systems
Requirements and Features

As presented in Section 2.2, the desired outcome of autonomy research and
practice is a component that serves as the driver of independent intelligence in
the distributed manufacturing system. However, there is a lack of standards and
frameworks present to support whole-system autonomy, and this is particularly
true for manufacturing autonomy. A high-level understanding of autonomy
may exist, but with no way to break down autonomy into smaller components
with clear requirements, implementation is a complex and difficult problem to
solve.

The derived objectives and features from the literature review in this paper
leads to our definition of ‘Autonomy in Manufacturing’. This is not a short tex-
tual definition as one might find in a dictionary, but a comprehensive model of
the features and requirements of autonomy for distributed manufacturing sys-
tems intended to facilitate research and implementation in the domain. This
process also describes the incremental steps to achieve manufacturing auton-
omy. In order to have a better understanding of the autonomy levels of the
manufacturing levels, the deduction of features and functionalities to describe
an autonomous manufacturing system is primarily based on the analysis of
existing concepts for distributed manufacturing systems (see Table 2.2).This
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Figure 2.14: Features and maturity levels of Autonomous Production
[134]
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is achieved using a process called a Morphological Box, which is designed for
breaking complex concepts into quantifiable sub-components [135, 136, 137].

The authors present a five-level model of autonomy to describe and charac-
terize different levels of whole-system autonomy and the requirements for each,
to enable evaluation of an entire manufacturing system. We also determine
three to five levels of technological maturity for each functionality, and then
describe them. Each feature maturity level is then matched to a whole-system
autonomous level, enabling the identification and evaluation of manufacturing
system’s autonomy capability based on the level of technological maturity of
the enabling features.

• Autonomous Level 1 (AL1): Factory without autonomy.

The first level covers manufacturing systems with the lowest autonomy
level even if the system contains high levels of automation. Mainly, the
systems relies on operator actions to start/continue processes, and no
highly connected systems are proposed here.

• Autonomous Level 2 (AL2): Basic Connected Factory.

An initial attempt to address connectivity in manufacturing. This is de-
fined by the inclusion of centralised data-driven management in connected
systems, to allow improved functionality and context-aware features. Hu-
man operators are still needed to intervene for many tasks, particularly
with high uncertainty or failure-recovery processes.

• Autonomous Level 3 (AL3): Distributed Intelligent Factory.

This level represents the distributed manufacturing intelligence concept,
and is characterized by the introduction of predictive features and self-
adaptable behaviors to external inputs locally to assets. Human operators
receive suggestions for alternative or optimized activities but the main
system objectives are still under the human control during operations as
the work space is fully shared. Collected data is continuously monitored
and automatically managed ready to be shared between all connected
systems.

• Autonomous Level 4 (AL4): Semi-Autonomous Factory.

At this stage, the system determines actions based on its high context-
awareness and its intrinsic safety rules. Human operators work cooper-
atively with the system rather than directly instructing it. Even if the
system is able to analyze its environment and track states for ’business
as usual’ execution, system goals and response to major disturbances are
still monitored by humans.

• Autonomous Level 5 (AL5): Fully Autonomous Factory.

The system is fully self-adaptable to uncertain or unforeseen inputs, en-
abled by advanced self-learning capabilities. The system is able to decide
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Table 2.2: Morphological box for the Autonomy concept and Five-Stage model
features

Category Feature

Data, information and knowledge

Data

Knowledge management

Interoperability

Process

Synchronization

Functionality

Optimization

Reliability

Interaction

Context Awareness

Interaction with humans

Safety

Infrastructure

Connectivity

Industry Control

Cyber-security

Self-X

Self-configuration

Self-healing

Self-optimization

Self-protection

Measurement performance

Accuracy

Stability

Certainty
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by itself the best option to meet common goals for these connected manu-
facturing systems without human intervention. However, AI and humans
will still collaborate actively during manufacturing operations.

2.4.1 Data, information and knowledge

This category groups the features: data, knowledge management and interop-
erability, with their respective functionalities (Table 2.3).

Table 2.3: Features and functionalities of data, information and knowledge

Category Feature Functionality

Data, in-
formation
and
knowledge

Data

Data structures

Data processing

Data integration

Knowledge management Knowledge management

Interoperability Hardware, software and knowledge

Data

The data feature can be divided into three functionalities: data structure and
data processing (both with three maturity levels); and data integration with
five. This is depicted in Fig. 2.15. Data structures develop in maturity as they
progress from unstructured to full structured data types, and data processing
matures as it transitions from data collection to data analysis that allows real-
time knowledge processing [138]. For data integration to reach a higher level of
maturity, it has to go through the following maturity levels [139]:

1. At this stage IT integration is non-existing, data about the manufacturing
process is neither stored nor used in any way, and manufacturing equip-
ment like machines, tools and work-parts are not integrated with the IT
systems;

2. The traditional information pyramid of manufacturing is implemented,
machines are integrated and managed by a Manufacturing Execution Sys-
tem (MES);

3. Relevant manufacturing data is integrated with data from other depart-
ments;

4. The implementation of a Service-Orientated Architectures allows data
provisioning. To eliminate inefficient communication, an enterprise ser-
vice bus connects data between enterprise and shop floor systems;
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5. Advanced real-time analytics play a major role for extracting information
from data, therefore bringing the need for digital twin (or other system)
which integrates all systems, devices, and data across the entire product
life cycle and uses insights about this data to automatically optimize the
factory and all manufacturing processes.

Figure 2.15: Maturity levels of data functionalities

Knowledge management

Autonomy also requires knowledge management—the ability to manage and
deploy acquired knowledge effectively. The lowest level of autonomy does not
require automated knowledge management, but as the level of autonomy in-
creases knowledge management becomes a crucial part of an autonomous sys-
tem. Knowledge management is done by explicit knowledge design and analyz-
ing historical data.

However, the designed knowledge may not be optimal for the system. There-
fore, as the technology progresses to the most advanced maturity level of knowl-
edge management will shift from explicit hand-design to automatic making
sense of underlying processes by analyzing raw data (Fig. 2.16):

1. No knowledge management is utilised;

2. Low-level knowledge design of entities and running processes that help
identify the current context;

3. Explicit knowledge design is required for the system to be context-aware
and self-adaptable to disturbances, though human operator feedback is
considered;
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4. Knowledge management is a combination of explicit knowledge design
and historical data, so the system self-improves with every iteration of
the design;

5. No explicit knowledge design is required by humans, the system is able
to analyze the raw data of its underlying processes.

Figure 2.16: Maturity levels of knowledge management

Interoperability

As communication between the system’s components is a key enabler to achiev-
ing a high level of autonomy, from the data point of view interoperability must
be considered as one of its prerequisites. Information sharing would be neces-
sary between all business levels, and therefore is not only limited to software or
hardware infrastructure, but to the process and information itself, supported
by widely spread standards and validation methods.

At the lower levels of maturity (Fig. 2.17) , interoperability is limited to
compatibility at the infrastructure level. As the maturity level increases, stan-
dardization at production and business-related processes and information man-
agement is required, followed by protocols and methods to guarantee knowledge
interoperability. At the top levels of maturity, methods for certification and val-
idation of interoperability would be required, combined with interoperability of
non-technical high level goals and business priorities [140, 141].

2.4.2 Process

The category encapsulates the features and functionalities of synchronisation,
functionality, optimization and reliability (Table 2.4).This category relates to
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Figure 2.17: Maturity levels of interoperability

features that form or influence a process of a production environment. End to
end synchronisation along with implicit functionality of a process direct towards
autonomous behavior. This behavior is made consistent by process optimization
and reliable execution.

Table 2.4: Features and functionalities of Autonomous Processes

Category Feature Functionality

Process

Synchronisation
Material/logistics

Physical (Production Machines) [142]

Functionality Mapping from Input (X) to Output (Y)

Optimization Optimization function Productive and Un-
productive contribution

Reliability Failure recovery
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Synchronisation

The synchronization aspect in production system autonomy can be categorized
into material/logistic synchronization, and physical synchronization as per the
work done by [142]. The material/logistic synchronization is concerned with
part and material movement from one station to ensure stations are not left
idle, and physical synchronisation is concerned with regular controlled part pro-
cessing at each station. At the lowest maturity levels there exists no logistic
synchronisation between each station. The part/material movement follows a
manual philosophy with automation increasing with each autonomy level. At
level three physical synchronisation is realized where parts are produced at a
synchronous rate at each station and transported regularly to match that phys-
ical synchronous effect. At level four the system could maintain this behaviour
independently but still requires human-assistance to start, stop or change cer-
tain aspects of behaviour. At level five this becomes completely independent
without human-assistance i.e. the system decides the rate and other conditions
itself for synchronization.

Figure 2.18: Maturity levels of synchronisation

Functionality

Functionality in a production system maps an input to output. A function can
be defined as an implicit event wherein the consecutive output is a function
of the input and the previous output. In manufacturing context, this concept
is taken as conversion of input to output by a production system element. At
the basic level of autonomy the production system is simply converting input to
output. At this stage however,a system is not capable of associating to multiple
inputs and multiple outputs. So, in true essence a true implicit function is not
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possible. As the autonomy level increases such association is realized. Further
up the autonomy scale inputs can be automated and machine programmed
to produce output functionality by mapping outputs to inputs.In the level-4
production system looks to the assigned goal to develop suitable input-output
ordered pairs. Execution of functionality still is retained by selection of human
operator. In case of full-autonomy the human-operator does not get involved
in any selection process and completed mapping and execution is performed
independently as per pertaining goals.

Figure 2.19: Maturity levels of functionality

Optimisation

Optimisation deals with identifying productive and non-productive contribution
of the operational elements of a system, and the influencing factors. At the basic
maturity level there is no capability in the production system for optimisation.
As the autonomy level increases the capability is present at key production
processes (operation elements). At a higher level the whole production line
is assumed to collectively follow an optimization objective. Moreover, at this
level it is possible to assess and display the productive and non-productive
components of the operation. Level four takes a summation of all productive
contributions and links it to the objective i.e. both the total productive and
non-productive contributions are identified, but a human-operator is required
to decide on how to reduce non-productiveness. At level five no human control
for objective mapping is necessary and the system reaches best approximation
by itself.
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Figure 2.20: Maturity levels of optimisation

Reliability

The reliability of the system is another aspect to consider when thinking about
the autonomous functioning of a system. The ability to overcome failures dur-
ing operation is a critical feature that would ensure continuous and effective
operation. At maturity level zero a system has no ability to detect or respond
to failures. As maturity increases the system gains the ability to diagnose fail-
ures and gather the information that allows the system to predict them. Going
further, higher levels of maturity will have a recovery routine that will help
the system to reallocate resources to avoid stops or disruption to its opera-
tion, which could be done at software and hardware level (if backup systems
are included). This may involve informing human workers on what actions are
required or (at level five) executing the recovery plan itself.
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Figure 2.21: Maturity levels of reliability

2.4.3 Interaction

Seamless interaction among humans, machines and smart devices constitutes
a distinctive requirement of autonomous manufacturing systems that are able
to control the inter-connected manufacturing process flows. Table 2.5 indicates
autonomous features enabling system interactions, including context aware, hu-
man interaction and safety.

Table 2.5: Features and functionalities of different interactions

Category Feature Functionality

Interactions

Context aware Physical, virtual and user environment

With humans

Operation

Programming

Control

Safety Integration level

Context-aware Interaction

As ICT tools in the factory are increasingly used as part of the digital and
smart manufacturing paradigms, controlling access to data and understanding
the required information flows poses challenges to be dealt with. Those chal-
lenges require context-awareness in autonomous manufacturing systems [143,
144, 145]. Context awareness, based on the information obtained from cyber-
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physical systems, is characterized as as the ability of the system to sense, inter-
pret, adapt, discover contextual resources and associate digital data with the
user’s context to better understand how data should be used [146, 147].

Figure 2.22: Maturity levels of context awareness

The increase in the level of autonomy will require the enhancement of
context-awareness feature as per Figure 2.22. Non-autonomous systems run
pre-defined programs without being aware of surrounding contextual infor-
mation and integration. As maturity increases, systems become aware of its
current context and adapt their operations to running processes and external
resources. At the highest maturity levels, the system can identify its current
context, running processes, external resources and the context in which human
operator interacts with a system and context of the environment, and thus aim
at increasing usability and effectiveness by taking environmental context into
account.

Interaction with humans

The interaction between humans and robots has been widely studied during the
last years from different viewpoints [148]. However, this general classification
of the relationship between both actors may be extrapolated to autonomous
systems as well (see Figure 2.23), as it is analysed under a perspective of the
autonomy concept. This analysis requires special effort since the future of
human-machine collaborations must be an attempt to enable future workforce
to handle complexity by complementing and enhancing rather than replacing
human capabilities and skills [149].

From an operational view [148], a basic level requires safety distancing and
protective measures as the system is not able to contextualise interactions be-
tween both actors. As maturity increases, this permits the coexistence of both
actors without overlapping each other, neither direct contact and the processes
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Figure 2.23: Maturity levels of human interactions

are performed independently and simultaneously. Shared work spaces refers
to human and the system working in the same working area with no physi-
cal or virtual fencing for separation. In that sense, a more interactive level
allows both actors to share the work space and communication between each
other is required. At this level, the work space is shared and physical contact
is allowed. A cooperative operation is developed when both actors have their
own objectives and goals in a mutually beneficial perspective, but normally
they must wait the other’s availability to work simultaneously. Here physical,
computational and cognitive resources may be shared temporarily. The highest
level of maturity allows a complete collaboration between actors. Both actors
have compatible objectives and goals and the work follows coordinated and
synchronised operations in a fluent manner.

Offline programming is mainly based on writing instructions and directly
uploading them to the system. This requires human operators with a high
level of knowledge of programming method, the task, and the system capabil-
ities. Higher maturity in this areas enables learning through demonstration,
based on repetition of movements previously guided by the human operator. It
also requires a human operator with a high level of knowledge of the processes
but the program is written directly by the system (storing positions, velocities
and other parameters) so requires less knowledge of the method of program-
ming. The highest level of autonomy for programming is when the system
autonomously knows and understands its own capabilities, as well the tasks it
has to perform without specific human guidance. [150].

As defined in previous sections, Human-in-the-loop (HitL) control allows
the integration of a human operator in the system. As almost any system re-
quires some minimal human intervention (system start / shutdown, continue
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command, etc), a low level of mono-directional (i.e. human to system) inter-
action is required. However, at higher autonomy levels, the control role over
the system can move from a more passive one (Human-on-the-loop, only for
monitoring and correcting purposes when necessary) to a more active one. In
this last case (high HitL), the human operator is an integrated element of the
system during main operations and tasks execution, with bi-directional infor-
mation flow and awareness between the system and the operator.

Safety

Regarding how safety features are deployed in autonomous systems, we mainly
classify them as intrinsic or extrinsic (see Figure 2.24). The level of uncertainty
is then analysed depending on the deployment level, as it plays a major role
[151].

Figure 2.24: Maturity levels of different integration levels of safety features

Low levels of safety maturity use extrinsic safety measures, which are ex-
ternal to the system and built by complementary components or systems such
as light gates or floor scanners. At this level, the system is built rigidly and
uncertainty is reduced at its minimum. On the other hand, medium maturity
can use intrinsic safety measures composed of built-in rules or components.
Systems consider safety measures before acting and require the participation
of workers in rule management. A higher level of maturity will assure process
safety as well as personal one and, in addition, certain level of rules adaptation
is required. The highest maturity level includes flexible rules with high levels of
adaptation to enable the system to respond safely and predictably to dynamic,
changing and novel scenarios while at the same time being called upon to plan
and reflect on their actions.
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2.4.4 Infrastructure

Ubiquitous connectivity infrastructure is a requirement in realizing Industry
4.0. With a rise in reliance on cloud technologies, One of the major pitfalls—
even in developed nations such as Germany—is a lack of reliable high-speed
broadband for SMEs. [152]. Industry 4.0 would require every supply chain
member to be integrated; thus, digital infrastructure is a factor that cannot
be ignored. The results of the survey of Penton’s IoT Institute, wherein 33 %
of respondents believed that lack of infrastructure is an issue in adopting IoT.
The survey further found that many firms are now collaborating instead of com-
peting regarding the necessary infrastructure development needed for Industry
4.0.[153]

Table 2.6: Features and functionalities of infrastructure

Category Feature Functionality

Infrastructure

Connectivity
Types of network

Application levels

Industry Control
Control Technology development

Application levels

Cybersecurity Hardware, software and knowledge

Connectivity

The degree of connectivity is divided into two subcategories: the type of network
and the application level. The type of network will influence the available
data exchange strategies and efficiencies, while also determining how agile the
system is to change or scaling. The application level is the elements of the
production system, from the lowest process and field levels, to the highest
connectivity between geographically distributed locations. The efficiency of a
system depends on how well the individual elements of the production system
are networked, as this is a requirement for data exchange and collaboration in
autonomous systems.[154]

In addition to the degree in which locations are networked, the type of net-
work is also an important part of connectivity. At the lowest maturity level
system elements are not networked, or rely on a manual movement of data. At
maturity level two centrally networked elements receive both information and
feedback via a central unit. Communication with other systems takes place via
the central unit, so there is no direct communication between the elements. At
maturity four decentralized networked production elements can communicate
with each other without a central unit, which facilitates robustness to failure
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and simpler addition or removal of elements and systems. Between centralised
and decentralised, a hybrid system communicates partly in a decentralized man-
ner and partly via the central unit. Here, some of the elements can already
communicate with each other but the main communication takes place via the
central unit.

Figure 2.25: maturity levels of connectivity

Industry control

Industrial control refers to industrial automation or operational technology,
which use the combination of electronic and electrical, mechanical, software,
computer technology, and microelectronics technology to control manufactur-
ing processes to achieve their goals. Industrial control aims to make the pro-
duction and manufacturing processes more automatic, efficient, accurate, and
controllable and visible. For the development of industry control technology,
two aspects and five maturity levels for each aspect are categorised. The Two
aspects are are control technology development and applications levels. For
control technology development, at maturity level 1, the theory and hardware
are developed. While at maturity level 5, the intelligence technology for control
theory should be developed. For Application levels, at maturity level 1, the in-
dustry control is only applied in process.As the applications level goes up, the
industry control can be used in bigger and more places.At maturity level 5, it
will be expanded to connected locations.

Cybersecurity

With the generation of valuable information, there arises a need to secure pro-
prietary data and processes from malicious actors. Cybersecurity deals with
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Figure 2.26: maturity levels of industry control

the protection of the whole information technology and operational technology
infrastructure. At maturity one, the minimum required security level is imple-
mented (i.e. mandated by government safety standards). With the increase
of the maturity level to two, infrastructure is secured through the continu-
ous monitoring of the running processes and connected devices. At maturity
three possible attack vectors can be predicted and reported to a human opera-
tor. The highest maturity level four has automatic intrusion detection directly
implemented into computers or controllers, or separate hardware with higher
computational power and system can secure itself from most of the attacks
[155].

2.4.5 Self-x capabilities

Self-x capabilities in manufacturing take roots from the concept of Autonomic
Computing in IT industry. In the 2001 manifesto of IBM, Horn [156] proposes
a possible solution for the growing software complexity crisis. The proposed
approach to solving the challenge is an Autonomic Computing system which
has self-management abilities similar to the human autonomic nervous system.
Autonomic Computing systems are capable of running themselves, adjust to
varying circumstances, and handle their resources efficiently. Self-management
abilities of Autonomic Computing systems comprise of four major character-
istics: self-configuration, self-healing, self-optimization and self-protection. In
literature, these four main characteristics of Autonomic Computing are known
as self-CHOP capabilities:

• Self-configuration is the ability of a system to configure and reconfig-
ure itself under changing and unpredictable conditions [156, 157, 158],
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Figure 2.27: Maturity levels of cybersecurity

Figure 2.28: Maturity levels of self-x capabilities

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

51 (115)



DiManD Deliverable D4.1

capability of adapting automatically and dynamically to environmental
changes [159, 160] and ability to automatically install, configure and inte-
grate new software components seamlessly to meet defined business strate-
gies [161].

• Self-healing is the ability of a system to automatically detect and diag-
nose faults, react to disruptions, repair when possible with the objective
to maximize availability, survivability, maintainability and reliability of
the system [156, 157, 158, 159, 160, 161].

• Self-optimization is the ability of a system to measure its current per-
formance against the known optimum [160]. The system always looks for
ways to optimize its performance and efficiency in reactive and proactive
ways[156, 158, 161] to maximize resource allocation and utilization for
satisfying requirements of different users [157, 159].

• Self-protection is the ability of a system to establish trust reliably [159],
detect, identify and protect itself against various types of attacks to main-
tain overall system security and integrity [156, 157, 160]. The system uses
early warning to anticipate and prevent systemwide failures [158], auto-
matically controls unauthorized access and intrusions, and reports them
as soon as they occur [157].

Self-x capabilities are required to reach the higher levels of autonomy in
future production systems, and the autonomous nature based on the self-x
capabilities are needed to adapt to unforeseen environmental conditions and
requirements. Self-x enables autonomy and self-x complexity increases with
autonomy level that is directly related to autonomous features of systems[162].
[162] define six levels (from 0 to 5) of autonomy concerning self-x enablement,
where level 0 is no autonomy, and level 5 is full autonomy in all areas.

2.4.6 Measurement performance

Measuring performance is critical for any system to understand how well the
system is operating, and what can be done to improve it. Many manufactur-
ing devices exist to measure the quality of parts or performance of processes.
Assuming data can be collected, measurement performance is a function of ac-
curacy, stability and certainty (see Table 2.7), and it refers to the quality and
the consistency of values given by a specific device (being it an instrument, a
robot or a whole system).

If uncertainty over the calibration or adjustment of instruments arises, ap-
praising accuracy alone leaves room for errors and misunderstandings.

Failing to assess that a value is stable in different situations and environ-
ments, therefore implying that a system cannot be trusted in varied conditions,
significantly hinders the utility of a measurement device [163].
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Table 2.7: Features and functionalities of measurement

Category Feature Functionality

Measurement performance

Accuracy

Precision

Repeatability

Sensitivity

Stability Transferability

Certainty Calibration

Accuracy

Between the features of Table 2.7, accuracy is typically the first to be considered,
but it is also difficult to properly define it. Accuracy encompasses all the
qualities that a measurement device–and therefore a measure–must have to be
acceptably used in a defined task.

Accuracy is commonly considered the distance between the measured value
and the reference value. However, ‘precision’ is the term that fits this definition
better, and it is a just a fragment of what accuracy really defines; therefore, it
is the first functionality in the model.

Since ambient conditions might influence the accuracy of a measurement,
as a second functionality the model includes ‘repeatability’, which is the capa-
bility to replicate the same measurement—with the same instrument, robot, or
system—over a short period of time, and under the same boundary conditions.

The third and last functionality is ‘sensitivity’, which represents the ratio
between a change in measurement value and a change in reference value. If the
sensitivity of a measure keeps constant over a range of values, then its transfer
function is perfectly linear, and as such it is ideal. However, when calculating
the transfer function in practice, it involves—more often than not—some change
in sensitivity over time [163]. Sensitivity also includes concerns surrounding the
ability to distinguish true positives (TP) and true negatives (TN) from false
positives (FP) and false negatives (FN) [164].

In the context of a binary classification, when there’s the need to statistically
calculate how acceptable a test is, sensitivity is the number of TP correctly
identified by the test (i.e. the number of samples that are correctly identified
as presenting the desired output) [164].

This would prove useful from an industry point of view, where big data
and accuracy of predictions, measurements and instruments will play an ever
increasing role [3].

The main purpose of accuracy determination is evident in quality control
activities, where a company wants to be sure of realizing products with the
highest possible performance level, possibly realizing a defects-free process. The
optimization of the process will be based solely on the analysis of the huge
amount of measurements that machines will produce. Thus, efficiently and
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accurately taking the measurements will result in a higher competitiveness on
the market [165].

Level one of maturity has no accuracy determination mechanism, but this
improves as the autonomy level increases. At higher levels automatic maxi-
mization of true positives and true negatives along with minimization of false
positives and false negatives is possible without human intervention . At lower
maturity levels, the calibration and setting of parameters requires human in-
tervention as the environment changes, but at the highest level five, the system
can continuously adapt measurement processes to maintain accuracy despite
changing conditions (see Figure 2.29).

Figure 2.29: Maturity levels of accuracy

Stability

Over time, a measurement device could exhibit variations in the quality and
reliability of the output value. The alteration could could be due to changing
environmental factors [163], and even a total change of scenery—for example
when a production autonomous robot is moved to a new production plant (see
Figure 2.30).

How can the user be sure that a system that worked with acceptable mea-
surement performances in a previous situation, could keep performing at the
same level when changes occur? If a device does that, then it could be consid-
ered stable.

A stable autonomous system presents a good level of transferability, which is
the ability to transfer performances (for example the accuracy of a well-trained
AI model) to other testing domains [166] and that consequently means they are
systems capable of making their own decisions and evaluate the challenges that
manufacturing proposes, under different and difficult circumstances [167, 168].
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Low stability maturity offers no safeguards on the reliability of measure-
ments, or only if the environmental conditions remain constant. At maturity
level three systems use artificial intelligence—or some other sort of algorithm—
to evaluate its own performances based on historic data of its operations, could
face the challenge of being moved to a different environment, where the whole
model it has created from previous data-sets is not valid any more.

Figure 2.30: Maturity levels of stability

Certainty

If an operator suspects that the readings of an instrument are inaccurate or
deviate from the reference, they could adjust the instrument to correct its
sensitivity. This correction could be linear for the simplest devices, but may be
non-linear, multi-point for the most complicated systems.

Whenever this adjustment occurs, a calibration of the instrument is needed
to verify its accuracy.

All measurements and the calibration of instruments refer to a working
primary standard. Therefore, all devices calibrated using that primary standard
should be accurate among themselves. The absolute accuracy of every one
of the instruments cannot be confirmed unless the calibration uncertainty is
defined [163].

Certainty takes into account the ability of production system to validate
measurements that are given as an operation input. Production machines are
typically capable of taking measurement input for the whole operation cycle;
however, they might be unable to distinguish true signals from clutter and noise.

At maturity level one, the system measures values for a given operation
cycle. As the maturity level increases, the system might be able to receive mea-
surements for each operation in the cycle, but still without complete certainty.
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At a higher level, it takes into account the noise and identifies the factors that
cause it. At the highest possible level, the system is capable of dealing with
that noise factor by itself: it eliminates the errors to conduct the most precise
operation it can. At this stage, no human effort is involved to clean the signal
(Figure 2.31).

Figure 2.31: Maturity levels of certainty

2.5 Model Discussion & Conclusions

Section 2.4 stands as a thorough description of the defining model the authors
wish to present to the scientific community for autonomy in manufacturing with
regards to the requirements and key features, to help break down the complex
concept into its constituent parts. It is also intended for companies to be used
as an evaluation of their factories’ autonomy capabilities, and identification of
the missing enablers and requirements. In this sense it is also a road-map from
conventional manufacturing systems through to fully autonomous ones.

Enterprises should compare their own achievements–in terms of autonomy–
to the definitions given in this paper, and rank themselves, for each of the
features/functionalities group, at a specific level of maturity. Then they could
understand how far they have come in building an autonomous system, and in
which areas there are open requirements.

It is clear that Industry 4.0 has brought digital and intelligent systems
to the forefront of manufacturing development, leading to major transforma-
tions in manufacturing requirements, capabilities, and operational and manage-
ment systems. Distributed manufacturing is a key goal that could be achieved
through manufacturing digitalisation, and this paper presents an investigation
into the ongoing debate around the definition of autonomy in both the scientific
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and the industrial communities. The contributions of this section are threefold:
First, a detailed analysis of the goals of autonomy to help clarify the concept’s
place among manufacturing systems. Second, the analysis of the features and
enabling technologies that can be used to support the identification and imple-
mentation requirements of autonomy in the context of manufacturing. Third,
the produced five-stage model is designed to give a overall granular definition
and guidelines to quantify a particular manufacturing system and pave the way
for the gradual transition towards autonomy.

Section 2.2 starts with the high-level definitions of autonomy in literature.
The difference between autonomy and automation is also highlighted with the
key ability for an autonomous entity to face unanticipated situations and adapt
its course of action as they appear. Furthermore, a variety of engineering
domains in which autonomy applications were reported in literature is also
provided, ranging from unmanned aerial/underwater vehicles to manufacturing
areas. Throughout these autonomy applications driven by business objectives
in the diverse fields, different autonomous applications will require a different
set of features to achieve their objectives, requiring a model to be developed
to lay basic for the development of such autonomous systems. This finding
opens Section 3 in which different autonomous models and their classification
in literature were investigated to understand the current knowledge of autonomy
levels along with the key enabling technologies and features.

This leads to the five-level model of autonomy features and requirements in
manufacturing systems, from no autonomy to a fully autonomous factory. Low
autonomy level manufacturing systems can be highly effective in pre-defined
situations, but will depend on human-decision making to react the unantici-
pated contexts. Conversely, the highest level implies total independent cognitive
functioning mechanisms on different features in terms of data, information and
knowledge, process, interaction, infrastructure, self-characteristics, and mea-
surement performance.

The system-view of these levels is broken down into the contributing fea-
tures as indicated by Table 2.2 and Section 2.4 showing the different features
associated with maturity levels. As the maturity level of these features and
functionalities increase, the overall autonomous level of the manufacturing can
also increase. This approach allows the identification of factors which may be
holding a system back from achieving its autonomous potential.

Even though there is increasing efforts to perform autonomous transfor-
mation in current leading manufacturing industries, such as semiconductor,
aerospace, and automotive, as referenced by Figure 2.13, the highest au-
tonomous level has not been achieved. The following work by the authors
will be an investigation of the barriers and challenges to increasing the ma-
turity levels of the contributing features of autonomy, as well as an analysis
of the business models and considerations which may hold back an otherwise
technically possible implementation.
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Chapter 3

A Review of Barriers and
Challenges to Autonomy
for Distributed Intelligent
Manufacturing Systems

3.1 Introduction

Each industrial revolution has had its own impact across global aspects for al-
most every manufacturing and economic sector, as well as societies and matters
of environmental sustainability. The first, second, and third industrial revolu-
tions changed industries through making the most of mechanization, electri-
fication and telecommunication - allowing mass production lines to high-level
automation [169, 170, 171]. These key technologies have enabled the produc-
tion of complex products to meet quality and production volume demands of
modern societies. However, the changes caused by those industrial revolutions
were not all positive and need to be taken into account for the next indus-
trial revolution, especially regarding social acceptance around the automation
of jobs, environmental sustainability such as air pollution, social inequality, and
need of shaping new roles of humans in increasingly skilled jobs [172, 173]. In
addition to the ongoing concerns, the demands of the market today require an
increasingly dynamic approach with rapid, diverse changes in manufacturing.
The trend of personalisation increases product variants and complexity which
is combined with short product life cycles, challenging traditional production
systems [13]. Furthermore, technologies change very quickly, posing new chal-
lenges in distribution of intersectorial and inter-country connections well as in
the structure of labor resources and education. Those changes, unpredictable
events, and disturbances cannot be handled efficiently by current conventional
hierarchical structures and methods in a productive and cost-effective man-
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ner, which stimulates emergence and formation of a new industrial revolution
commonly called “Industry 4.0” [171, 11, 174].

Industry 4.0 was announced at the Hanover Fair in 2011 and it is generally
regarded as the next industrial revolution based on technologies such as the
Internet of Things (IoT) and use of cyber-physical systems embedded in man-
ufacturing factories, enabling the distribution of control and intelligence [175].
These technologies pave the way for the development of factories which are dif-
ferentiated from the conventional automation by the key ability for intelligent
entities to handle changing situations and adapt its course of action at a local
level as disruption (or opportunities) appear.

However, as described in the previous section, distributed intelligence is only
the first step towards a truly responsive factory. To meet new and unexpected
challenges, the system but be autonomous. The path to a fully autonomous fac-
tory is challenging, which is why we derived the five-level model and definition of
autonomy in manufacturing systems, from no autonomy to a fully autonomous
factory [176]. Low autonomy level manufacturing systems can be highly effec-
tive in pre-defined situations, but will depend on human-decision making to
react the unanticipated contexts, even with local distributed intelligence in the
assets. Conversely, the highest level implies total independent cognitive mech-
anisms on different functioning categories associated with contributing features
in terms of data, information and knowledge, process, interaction, infrastruc-
ture, self-characteristics, and measurement performance. As the maturity level
of these features and functionalities increase, the overall autonomous level of
the manufacturing can also be enhanced. However, there are barriers and chal-
lenges holding companies back from achieving higher maturity levels of these
features and functionalities. Even the current leading manufacturing indus-
tries, such as semiconductor, aerospace, and automotive, have not achieved the
highest autonomous level [177].

Though numerous research efforts have been made to point out the in-
hibitors to Industry 4.0 [178, 179, 180, 16], a comprehensive study that inves-
tigates them at a detailed level while also considering the specific autonomy
features is lacking. This is not a trivial task and represents the central con-
tribution of this section. These barriers and challenges imply a wide range of
obstacles and issues related to understanding and developing increasingly ma-
ture levels of the contributing features of autonomy, as well as the business
models and considerations which may hold back an otherwise technically possi-
ble implementation. By taking these challenges into account, planning can be
made to prepare resources and operations to avoid potential failure as well as
maximize the full potential of autonomy in a distributed manufacturing system.

This objective is delivered by providing an analysis of the state of art re-
garding barriers and challenges: (1) on the path of getting the highest maturity
level of each feature and functionality to form fully autonomous factory; (2) on
the business models, social and environmental considerations beyond the tech-
nical issues; (3) offering future project development perspectives taking those
barriers and challenges into account. The following section presents a compre-
hensive set of technical barriers and challenges structured in their corresponding
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autonomous feature and functionality. Beyond to the technical aspects, Sec-
tion 3.3 emphasizes on sustainable aspects encapsulating social, economic and
environmental barriers and challenges. Section 3.4 ends in its brief conclusion
by making the most of the analysis to establish the future project development
perspectives in realizing full potential of autonomy in manufacturing context.

3.2 Technical barriers and challenges

When a manufacturer first familiarizes with the concepts of distributed man-
ufacturing intelligence, Cyber-Physical Systems and the Internet of Things
(founding concepts of the Industry 4.0 revolution [181]), they might be im-
pressed by the vision of a future where machines will be able to auto-drive
themselves and where manufacturing will mostly be driven by machining cen-
ters’ decisions–with little to no human interaction. That is why managers from
important companies have been saying for a few years that they plan to convert
production to be autonomous as soon as possible.

However, there are problems linked to a lack of knowledge about the actions
that should be undertaken to promote the change, about the technological
innovations coming out year by year and the amount of investment required to
embrace autonomy [182].

The idea of transforming a company to a totally autonomous manufacturing
center is beautiful in theory, but it poses a series of daunting challenges and
seemingly insurmountable barriers that are well highlighted by [180]:

• human resources and work circumstances [183, 184];

• shortage of financial resources [185];

• standardization problems [186];

• concerns about cyber-security and data ownership issues [185, 187];

• technological integration [185];

• difficulty of coordination across organizational units [187];

• lack of planning skills and activities [182];

• organizational resistance [182].

While barriers and challenges might often overlap, as a general reference in
our concept a technological, economical or resource related issue, that is resolved
only with an external action (i.e. a new robot, a conspicuous investment or
hiring an expert in the field) should be considered as barriers to the development
of autonomy; on the other hand, reluctance and hesitation both by managers
and the work force to welcome these new ideas, concerns about security or safety
and lack of planning and activities–all elements coming from inside companies
that hinders technological advancement–should be regarded as challenges.
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This paper aims to address–at the best of our knowledge–the barriers and
challenges that implementing an autonomous factory poses, with regards to
the features of the model for autonomy developed by the authors in a previous
paper [176].

This section focuses specifically on the technical aspects that hinders the de-
ployment of a fully autonomous manufacturing center, tackling them clustered
in the aforementioned features.

3.2.1 Data, information and knowledge

The model developed in [176] identifies ‘Data’ as one of the dimensions needed
to estimate the level of autonomy of a manufacturing system. In general, the
data fed to an autonomous system is processed to become information, which
is the base for the knowledge, later utilized to make decisions [188]; when this
knowledge is fully understood by the system, it becomes wisdom.

Nowadays, companies that understand the power of information as a strate-
gic decision-making tool will be more prepared to face future market compe-
titions [189]; therefore, the aim of this section is to identify the barriers and
challenges in data management, based on the features identified in the above-
mentioned model, and also summarized in Fig. 3.1.

Figure 3.1: Barriers and challenges related to data usage in autonomous systems

Data

Strictly related to data, there are some concerns about the quality, amount, and
reliability of the data used to build the knowledge of an autonomous system.

About reliability, the possibility of using corrupt or manipulated data, or
that it came from an unreliable source is a big concern [188]. Since this data is
the basis for knowledge that the system will build for itself, it is essential that
is not contaminated, nor targeted to a specific purpose, as it could generate
bias in the system, affecting its decisions [190].

On the other hand, it is possible to assume that a way to ensure data
reliability is to analyze significant volumes of it to structure the algorithms or
training for the systems; however, this practice does not guarantee that the
sample is not biased. Depending on the variables of interest, it is crucial to
assure that the sample data is representative enough and carefully selected, to
generate valid results [190].
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Finally, the data quality is of high importance; the measured variables
should have a rational correlation, and be of statistical significance to be suit-
able to be fed to an autonomous system [190].

The main challenge related to data usage is to develop algorithms and meth-
ods to reliably and securely process data so that it will not mislead the system,
while also minimizing the need to include a human.

Knowledge management

Due to the increasing value of data in the digital era, another significant concern
is its management. Along with collecting the data and having it available to
be used, how it is handled, secured, and used is worrisome.

Regarding security, it is necessary to deploy strategies to protect data during
its creation, storage, usage, sharing, archive, and destruction. Not only the
confidentiality when using sensitive data, but the protection of its integrity
is important in a safe autonomous system [191]; this is also related to cyber-
security, which is discussed later in this work, as well as ethical aspects (Section
3.3.1).

Another subject is that the volume of data collected by autonomous systems
will require large storage space. Several alternatives should be developed to
have quick access to long-time stored data, backups, and recently collected
data. Significant efforts on developing storage solutions to allow secure and
quick access while maintaining or lowering costs [192] and optimizing energy
usage are needed.

Other challenges addressed [193] are related to the processing: the demand
for methods and algorithms capable of handling massive flows of data; the la-
borious task to analyze raw, unstructured data, that is hard to separate values,
combine, analyze; and, the difficult and resource-consuming task of cleaning
the data to be introduced to a system.

Interoperability

Using the definition given by the the ISO 16100 standard, “interoperability is
the ability to share and exchange information using common syntax and seman-
tics to meet an application specific functional relationship across a common
interface” [194]. Sharing the information between different domains requires
overcoming several barriers, including the ones identified by [195]:

• compatibility of data flows;

• interpretation of data flows in multiple non-standard formats;

• not using existing standard formats to share information.

Information sharing is crucial for achieving autonomous behavior in a sys-
tem; if the system cannot understand the information coming from different
sources, it would not be processed, neither will it be utilized as a system in-
put. Seamless communication between the components of the system requires
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establishing a reference system architecture and the standards that will govern
the information exchange at all levels, which is a task that demands coopera-
tion between different industries and also a substantial investment of time and
potentially money [195, 196].

3.2.2 Process

The model developed in previous work places the ‘process’ category as one of the
drivers to ensure autonomic system behavior. This category relates to features
that form or influence the physical manufacturing processes of a production
environment. End to end physical and logistic synchronisation in production
facility along with capability to execute functionality implicitly (functional-
ity is ensured by external inputs but also takes inputs from other preceding
processes) of a process directs towards autonomous behavior. This behavior
is made consistent by process optimization and reliable execution. Based on
the features identified that influence this category, this section describes major
challenges and hurdles in the synchronisation of production systems, reaching
and optimised state, having reliable execution.

Synchronization

The synchronization aspect in production system autonomy can be categorized
into material/logistic synchronization, and physical synchronization as per the
work done by [142]. The material/logistic synchronization is concerned with
part and material movement from one station to ensure stations are not left
idle, and physical synchronisation is concerned with regular controlled part
processing at each station.

The major barriers to synchronisation in production system involve failing to
achieve ideal working and collaborative conditions, failing to eliminate wasteful
movements as well as parts of operation, failing to harness the full contribution
capability of the resources and failing to act continuously for self-improvement.
The major barriers or hurdles in process synchronisation can be contributed to
certain factors which are:

• Lack of sate realisation: The realisation of state of the system by the
system itself assists in manipulation of the state for ideal working envi-
ronment [197]. System setbacks that may result in degraded performance
could be controlled by synchronisation of the system at the logistic, cyber
and physical levels.

• Lack of end-to-end For achieving complete autonomy end-to-end synchro-
nisation is necessary. The synchronous behaviour could be divided into
logistic and physical synchronisation [142]. Logistic synchronisation is re-
lational between component transfer between stations and physical syn-
chronisation is adherent is to all components of the system itself. The
system component in this regards should be capable to being made syn-
chronous both in terms of logistic transfer and physical components (the
previous components should adapt to the next).
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• Synchronisation in production system can be hurdled by the inability to
restrict wasteful activities (a form of noise) [198]. The system should be
capable of identifying and eliminating such activities.

• System should be adaptable [199] i.e. acting on best suitable parameters
by providing constant comparison through a criteria.

Optimisation

Optimisation in manufacturing involves cost and resource optimisation. Op-
timisation is about selecting the best possible alternatives among a set that
fulfills a specific criterion. The specific criterion in case of manufacturing is
all activities that lead to producing of those products which fulfill all required
functionalities, performance, characteristics and quality. In a manufacturing
environment the optimisation goal must be set at all levels (strategic, tactical
and operative). For all levels objectives and constraints must be defined.

At the strategic level optimisation is carried out to support decision making
of product/process selection, acquisition of new services and resources. At tac-
tical level optimisation supports production planning, procedure identification
and resource management whereas at operative level it deals with decisions of
flow management (inventory, scheduling), operation control and quality control.

Cost optimisation leads to a competitive advantage for manufacturers by
helping them undercut price relative to competitors, increasing margins, and
improving cash-flows. It also leads to reinvestment into the business encour-
aging potential growth. However, certain challenges and barriers could restrict
realizing the potential. One of the contributing factors is poor cost manage-
ment systems [200]. A good cost management system should enable effective
and efficient insight into cash flows at the shortest intervals. These cost man-
agement systems should extend all the way from shop floor to top level business
and provide a coherent view in terms of financial statements.

Failure to adopt a zero-based budgeting standard [201] may also incur re-
striction in cost optimization as a zero-based budget enforces a justification on
expenditure. This is necessary to continuously challenge the costing paradigm
and establishing new cost trajectories. This coupled with performing contin-
uous improvement on budgeting process can lead to effective and robust cost
optimization functionality. This continuous improvement in budgeting process
is carried out by tightening your budget over time by small increments aided
by steps taken to reduce cost. Operating on lower side of cost structure may
be beneficial to the organisation and may lead to activities of cost optimization
[202].

Cost optimization suffers when fixed and variable costs are managed sepa-
rately. This could be countered by using an ‘income statement’ approach to the
process area level thereby developing a holistic idea of cost. Poor cost alloca-
tion may also serve as a barrier for cost optimization as inaccurately associated
costs become unmanageable. Costs should always be maintained by cost cen-
ters. Cost optimization could also be impacted by poor integration of business
goals with costs to optimize the whole business [202].
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Resource optimization is essential to ensure production can be carried out
to meet varying demands ensuring proper compliance. The major barriers
and challenges in resource optimization are usually contributed due to lack of
proper information management and processing along with incapability to offer
scalability to the varying demand. This in turns restricts the decision-making
process and constrains resource optimization.

Resource optimisation deals with a set of processes and methods that match
available resources with organisational needs to achieve established goals. The
target of resource optimisation is towards minimum utilisation while achieving
desired results (under time frame and cost). In a manufacturing systemic ap-
proach resource optimisation is linked to concept of constraint and company
vision. The company vision is important in case of resource optimisation as it
is difficult to define global effectiveness of the resource. The main requirements
of resource optimisation are:

• System should have capability to implement and have knowledge on the
global goal to be achieved (priority over individual tasks).

• System must have the capability to scale the effectiveness of the task.
Match the global goal when performing operations.

• System must identify constraints and provide protection against variation.

• System should have full management capability over process.

• System must have good Statistical Process Control (SPC).

Reliability

A lack of proper standards can serve as a major inhibitor for effective reliabil-
ity management in manufacturing setting [203]. These standards must provide
a set of common definitions and structures for reliability requirements com-
munication, estimation, and testing of parameters and reporting. The lack of
a unified framework is another major barrier to Industry 4.0 implementation.
Using a framework enables error-free execution by unifying on common under-
standable terms.

A common unified framework for reliability enables development of common
terms which would assist in preventing misunderstandings. The framework
might include an outline for data collection, analysis and reporting controlled by
an effective communication technology. Novel failure mechanisms can restrict
autonomous behaviour due to the novelty of the situation, and that is specially
valid in case when such capability to overcome such behaviour is not valid in
system.

Reliability may also be effected by changes in environmental conditions
along with system use conditions. The system state may also effect the fac-
tor as each specific state is influenced by some underlying principle and may
perform a function with reliability to a certain extent. For this a clearly outlined
method of rubrics/checklist measurement must be present.
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3.2.3 Interaction

As the ambition to get a global manufacturing network of autonomous and
interconnected systems is getting more and more attraction, it is required to
analyse those technological aspects that slow down the improvement of the
interactive features of these systems and their deployment in real scenarios. In
this section, different barriers and challenges that define the maturity of the
enabling technologies are analysed according to different features: i) context-
aware technologies, ii) the human interactions, and iii) safety technologies.

Context aware

Context-awareness is one of the key differences between autonomy and automa-
tion when used in conventional manufacturing structures. At its highest level
of maturity, context-aware systems embed an ability of contextual sensing to
aware their own characteristics and constraints and their interaction with en-
tities’ preferences and environment characteristics. Such systems accordingly
perform contextual resource discovery and adaption by executing autonomous
actions to adapt to changes of the sensed environment without explicit inter-
vention [176] [143, 144, 145, 147]. An autonomous manufacturing system is
characterized as an inter-connected intelligent system, where the entities are
objects which can be a user (humans), place (locations), or thing (machines)
whose state regarding a specific aspect or situation is characterized by any
information forming the context information. The context itself can also be
understood by an active context and a passive context [204, 144]. The active
context is needed to identify the current entity and its conditions while the
passive context is all other contexts. For instance, if a smart machine intends
to provide only the maintenance worker with a service request, the worker´s
roles is important and the context represents the active context while the con-
text represents a passive context in which the machine provides all users with
a general information and their roles are not matters.

Context-aware systems have been defined, adapted and applied in different
domains. One of them is the knowledge context-awareness based systems in
which human is supported with the exact needed information flows relative to
their skills and expertise, e.g. novice, intermediate and expert workers [143].
Another application published was in the shoe manufacturing process in which
the process parameters are autonomously adjusted based on the context to
improve error-prone processes and reduce maintenance problems [145]. Many
applications have been published [205, 146, 144, 145], showing a tremendous po-
tential of context-awareness systems in the predictability of the work situations,
service availability and comprehension.

However, application of context awareness in the manufacturing industry
has not yet been sufficiently researched [144]. This is evidenced by the fact
that the majority of existing contributions in the field are still in the stage
of context sensing without providing a support to adaptation to these new
contexts of use. There is also no common architecture providing all context
sensing and interpreting components [145, 147]. Several barriers and challenges
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hold the systems back from getting the highest maturity as full potential of
context-aware systems in industrial applications. They can be classified and
summarized in data management, network and connectivity infrastructure, and
security and privacy management.

Firstly, the issues regarding data management in the context of intercon-
nected processes or sensors are very prominent. They are related to a capability
in handling the diversity of data sources and types concurrently, which requires
innovative context-aware methods to extract comprehensive contextual infor-
mation from these diverse data sources [206, 144, 145, 174]. Furthermore,
filtering, validation and processing relevant contextual information within the
time limits, such as real run-time, are also challenges for the design and de-
velopment, motivating the rigorous investigation, design, and development of
real-time context aware big data processing techniques and the manipulation of
contextual information including internal and external entities simultaneously.

In addition to data management, network and connectivity infrastructure
must be considered for realizing full potential of context-awareness. The brief
and/or intermittent connectivity associated with diverse interaction with en-
tities, which is further challenged by the limited capability of resources, pose
a challenge of listing and combining the information of the context states to
prioritize actions. Furthermore, another concern lie in the level of sufficient
network resources required to be available to such systems at any space and
time. Some work is still required to ensure the smooth functioning without
requiring intervention [180, 207].

Security and privacy are also prominent issues because context-aware sys-
tems are more likely to put critical task and process information over the in-
frastructure that may be insecure or is not perceived to be secure [206, 207].
This demands a compatible security solution with pervasive mechanisms and a
scalable and adaptive policy.

Interaction with humans

In terms of interactions, one of the most challenging concepts of new intelligent
manufacturing systems is not only the interconnection or interactions with other
systems, but also the introduction of humans into the system. Human roles in
autonomous systems are a key enabling factor for autonomous systems [176],
and then it is mandatory to analyse and to assess carefully the main barriers
and challenges of its introduction.

A goal of future factories is to be better suited for workers with different
skills, capabilities and preferences, with greater autonomy and opportunities
for self-development. The system will adapt the factory shop-floor to the skills,
capabilities and needs of the worker by means of digital assistance systems
and technologies. It is defined that two or more actors in a system are in a
cooperation if: i) each strives to reach goals while interfering with the others’
goals (at least regarding resources or procedures), and ii) they try to manage
such interference to make the others’ activities easier.

The following sections address the introduction of the human factor dur-
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ing the design process, and the technological reality when dealing with unpre-
dictable systems, as those in which the human is introduced as a main character.

A Human-centered design

It is common that researchers adopt a techno-centered approach (i.e. giving
priority to solve technical issues), favouring the definition and allocation of tasks
to automated systems, only taking human operators into consideration at the
end of the design process once the control system has been defined, hence giving
to the human the role of supervision. This is: to determine the objectives, to
tune the parameters, constraints and rules. Even with a “human-in-the-loop”
approach, in terms of human factors, it can be interpreted more as a way of
keeping humans in the “decisional/responsibility loop” but not in the “control
loop”: the human operator is excluded from the decisions made by the control
system [208]. In addition, this techno-centered approach prioritises automating
a maximum number of functions in a pre-defined context and it is assumed
that the overestimated ability of the human operator (who behaves perfectly
when desired and within suitable response times, as well as reacts perfectly
in the face of unexpected situations) will only supervise and handle all the
unforeseen situations on the fly. In contrast, in a human-centered approach,
the human operator must be involved in the dynamics of the construction of
decisions, being aware of the system runtime and an important decisional part
of what would be the right rule or parameter to tune. These models are based
on following facts [209]:

• The human can be the ‘devil’, i.e. they may forget, make mistakes, over-
react, be absent, or even the root cause of a disaster.

• The human can be the ‘hero’, i.e. they may save lives through unexpected,
innovative behaviours and be an opportunist who can perceive and use
unexpected information.

• The human can be the powerless witness, i.e. they may not act despite
knowing the right or wrong action.

• The human is legally and socially accountable, i.e. is allocated responsi-
bilities and authorities between humans and machines.

According to the production roles, human-centric functionalities and their
technologies are classified in [149]:

• The silent teacher, supporting the learning process of operators.

• Knowledge manager, who handles relevant information flows from differ-
ent stakeholders.

• Resource integrator, enabling agile and reconfigurable CPPS.

• Caregiver, whose commitment considers the assessment and minimisation
of negative impact of certain tasks.
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• Risk manager, whose mission is to create a healthier, safer and productive
workplace.

• Flow master, in charge of managing all resources’ flows to reduce lead
times while improving quality.

Based on these principles, some specifications may be listed to design a more
human-centered system [209]:

• The human must be always aware of the situation.

• The levels of automation must be suitable for active human-machine col-
laboration and adaptive.

• The diversity and repeatability of decisions must be considered.

• The human mental workload must be carefully regulated, as well as the
feeling of the need to cooperate and the willingness to do so.

As a solution, new frameworks are proposed that suggest exchanging infor-
mation along the structure, which is decomposed in to 3 levels [208]: i) opera-
tional, ii) tactical, iii) and strategic. In addition, a key proposal is related to the
integration of mutual observation to further investigate the limited reliability
of the human or either the manufacturing control system. Main streams in this
field focus on [210] i) research in automation and task analysis to provide good
methods to model the decision-making processes and the boundaries between
human and automation control, ii) research on collaboration and symbiosis to
provide a useful perspective on the dynamic adaptation and reciprocal support
between human workers and technological systems, and iii) labour market to
identify jobs that leverage peculiar human capabilities, hardly replaceable by
artificial intelligence and automation.

Lastly, these technologies might be deployed to enhance human creative
potential as a complement to the robotic and virtual world of the fully auto-
mated cyber-physical production system. Enhancing human actuation from the
supervisor role (“standby operator”) to the maker role.

B Gap expectations between human-centered disruption and un-
predictable systems

If we want to be definitive in awarding human operators a central role in
industry, much effort must be placed to close the gap between last technology
developments and safely control complex and unpredictable systems. Tech-
nological enablers of human-centered designs are, among other technological
disruptions, supported by cognitive interactions (see Section 3.2.3), advanced
visualizations and simulations [149].

A collaborative system must capture the main added-value of work, which
includes decision making and problem solving, creative actions and social be-
haviours, with reference to individual activities rather than jobs [210]. The
integration of human factors is enabled through the collection of data about
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the operator’s performance, actions and reactions, aiming at improving the
overall factory performance, avoiding bottlenecks. In order to implement this
interactive collaboration, a three-step strategy may be followed [210]: i) selec-
tion of assembly phases, ii) choice of the level of cognitive automation carrier,
and iii) recommendations of cognitive automation content.

Actors’ abilities according to each type of task are called know-how and
know-how-to-cooperate [208]. Know-how is the actor’s ability to control the
process by itself, without considering exchanges with other agents. Internal
know-how deals with problem solving by actor’s skills and capacities, based on
its skills for known situations, rules for identified problems and its knowledge
when new problems arise and requires analysis. External know-how relates to
obtain information from the exterior (process) and the capabilities for actuating
over it. Know-how-to-cooperate allows interactions with other actors and is
also divided in internal (model knowledge of other actors) and external (how
to interact with those actors).

Both, augmented cognitive interactions and visual computing technologies
may play a key role in empowering operators with digital tools and solutions for
improving their decision-making and action-taking processes in specific tasks
such as assembly, maintenance, quality control, training, inventory and machine
operations [210]. All these technologies enhance operators’ ability to perform
traditional tasks and to easily learn new ones, not only in isolation but also in
connection with other digital and physical systems.

Visual interfaces enable easy communication links which comprise control
unit terminals and human-machine interfaces and allow information feedback
from and to shop floor [148]. Augmented Reality (AR) devices, monitors on
workstations, smartwatches, mobile PCs and tablets are known to be inter-
faces easily deployed along the whole manufacturing line, to provide instant
and intuitive in-situ decision support. Simulations are still a challenge in final
assembly operations due to the sequence generation algorithm for the creation
of assembly steps, which are computed and then delivered to the aforemen-
tioned visual interfaces. Virtual Reality (VR) environments provide a safe and
effective environment to carry out human-robot collaboration (HRC) strategies
[211].

Since machines and humans share the same physical space, the way in which
the autonomous machine (commonly robots) moves and operates, substantially
affects the final performance of the whole human-machine team [148]. This
represents a trade-off between the human comfort and the low time necessary
to the team to perform the assigned tasks. The assessment of ergonomics, emo-
tions and reactions (legibility and predictability, i.e. transparency) during the
collaboration has been widely studied, even it still represents a huge challenge
in real applications [148, 212, 213].

Safety

This section focuses on the technical barriers and challenges for constructing
and implementing safety measures for autonomous systems, that is to imple-
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ment safe methods and protocols [176]. For that purpose, firstly, general defini-
tions of safe protocols to enhance the implementation of safe and autonomous
systems are analysed. The last part of this analysis studies the implementation
of moral machines as a solution for safe autonomous systems with enhanced
safety protocols (flexible rules).

A Designing safe and autonomous systems: defining protocols

Normally, safety has been analysed as a centralised routine focused on mini-
mizing risks of hierarchical systems by creating stability and control through
minimizing uncertainties. As previously seen [176], future autonomous systems
are based on decentralized control strategies which are specifically design to
manage demands of stability and responsiveness (reactiveness) under external
and internal uncertainties (lack of information or ambiguity in available infor-
mation) by fast and local adaptations and improvisation (the emergence con-
cept). However, that decentralization poses many challenging questions about
safety issues [151]. Hence, making traditional safety approaches less suitable.
Some research point at the theoretical concept of loose coupling as an approach
that meets decentralised requirements for creating mechanisms for these new
complex control strategies. The concept of loosely coupling is not easily defined
as represents a contradiction which, in general terms, stands for [214] an ap-
proach to interconnecting components or elements in a system or network which
have either few variables or knowledge in common or in a weak way. That is,
elements may affect each other suddenly (rather than constantly), occasionally
(rather than constantly), indirectly (rather than directly) or eventually (rather
than immediately).

Considering the application of safety measures, one can distinguish between
process and personal safety, and between operational and higher-order safety
[151]. In process safety, the risks are directly linked to the primary work tasks
of the organization (e.g. production and transportation). Potential damages
to persons or the environment result from failures in the execution of these
primary tasks. Personal safety, potential damages concern the human operators
themselves, but they are not necessarily directly linked to the primary work
task. Protection against personal safety hazards is mostly a secondary task,
sometimes interfering with the primary task. A proposed theoretical framework
can be seen in 3.2.

The proposed framework is driven by the motivation of autonomy with
the goal of achieving safety behaviours and outcomes to personal and process
safety. Uncertainty moderates the whole process mainly creating the need of
loose coupling mechanism (concurrent centralization and decentralization) to
face dynamic changes. The relation between autonomy and motivation is of
important relevance due to its complexity. For example, in the assumption
of highly and intrinsically motivating jobs, workers may find a more natural
solution for an autonomous decision-making demand under high uncertainty.
In contrast, in situations with low uncertainty, keeping workers’ participation in
reduced operational autonomy decisions (i.e., higher order autonomy) maintains
intrinsic motivation, or even require extrinsic motivation (rewards or social
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recognition). Nonetheless, uncertainty may also affect the relationship between
safety behaviour and safety outcomes, the participation in safety becomes more
important when more flexibility and adaptation are required, as a response to
demands of dynamic and changing situations.

Figure 3.2: Conceptual framework of the relationship between safety and auton-
omy, based on loose coupling mechanisms and the implications of uncertainty
along the whole process. Adapted from [151]

Evaluation methods rank risk and hazards according to their impact (safety)
and to the probability of risk (reliability) [215]. For that purpose, it is important
to differentiate the terms safety and reliability. For the reliability analysis,
readers are referred to Section 3.2.2.

Based on the Quantity Risk Analysis (QRA), a theoretical framework based
on Machine Learning is proposed to provide a basis for assurance and regulation
of autonomous systems [216]. The most challenging part is that, while tradi-
tional systems are only evaluated at the beginning of the systems’ conception
(prior to deployment) and remains largely valid through life, new autonomous
systems require continuous evaluation of safety actions. The framework is di-
vided in four major elements (see Figure 3.3): i) the autonomous system by
itself and its operational environment; ii) the design and simulation models, as
well as the results of the safety analysis; iii) operational data and results of this
data; and iv) the safety/assurance case. Dissonances or distortions between the
elements are:

a Between the real world and the world as imaged are:

– Assumptions: Include mismatch between the risk assessment and
reality.

– Framing (scoping): Aspects considered from the real world and
which do not.

– Model fidelity : Precision and accuracy of the models used (see Sec-
tion 3.2.6).

– Training data: Limitations of the dataset used to train autonomous
models (see Section 3.2.1).
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Figure 3.3: General view of the proposed Safety Assurance Framework. The
framework continuously observes the system by differentiating between the ob-
server world (collected data from sensors) and the imagined world (safety anal-
ysis based on simulations). Adapted from [216]
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– Uncertainty : Likely variations in the environment or perturbations
unable to be modelled due to the complexity.

b Between the real world and the world as observed are:

– Sensing : Limited performance of the sensors or as a consequence of
the environment.

– ML algorithmic limitations: As a characteristic of ML algorithms.

– Failure conditions: Hardware failures affecting the behaviour.

– Human/team performance: Human performance as a result of limi-
tations in cognition and capabilities.

– Resource limitations: Similar to algorithmic limitations but as a
result of a lack of resources.

B Autonomous safety: the moral machine

Different mechanisms might be deployed for the construction of safety rules,
under the premise of safety first. As an advanced mechanism, flexible rules
represent another mechanism for loose coupling as workers are guided and con-
strained in their actions, while at the same time being called upon to plan and
reflect on their actions [151]. In this context, some research works defined the
atomization of actions paradox, which stands for the motivation to develop a
plan - consisting in smaller actions - with the premises of general rules, under
the context of a self-regulated goal, following a self-update behaviour in moral
machines. Flexible rules propose exogenous limits while encourages exploration
and expansion of endogenous capabilities of the moral system.

Under that premise, the development follows many questions: Whose and
what morality? (see Section 3.3.1), and How? To answer this last question that
relates the technological part, the distinction between artificial moral agents
(AMA, as an implicit ethical agent or weak “moral” AI scenario) and artifi-
cial autonomous moral agent (AAMA, as an explicit ethical agent or strong
“moral” AI scenario) is made by defining the level of “programmed” moral-
ity [217]. By analysing different moral machine models (Kantian’s moral ma-
chine [218], Anderson & Anderson’s reinterpretation of utilitarism [219], and
Howard Mutean’s virtue machine [220], pp 121-159), the author concluded
that all projects faced the same problems in relating computation to estima-
tion which affect the respective correspondence between epistemic and moral
predictability, while building such machines.

3.2.4 Infrastructure

Wide-ranging broadband infrastructure is a must in realizing Industry 4.0. One
of the major pitfalls, even in developed nations such as Germany, is a lack of
reliable high-speed broadband for SMEs. Industry 4.0 would require every
member to be integrated; thus, digital infrastructure is a factor that cannot be
ignored.

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

74 (115)



DiManD Deliverable D4.1

Connectivity

While data communications have long existed in industrial automation systems,
they are built for closed-looped control tasks only. As such, machine and op-
erational data are often trapped within multiple process silos on the factory
floor. Connecting these systems via Ethernet can be expensive, cumbersome
and may require production shutdowns. In many industrial settings like open-
pit mines and oil fields, asymmetric topography and vast geographical areas
make trenching wires almost impossible.[221]

The IIoT value chain essentially starts with data collection and choosing
the right connectivity solution might ultimately impact the success of your
IIoT initiative. There’s a plethora of wireless technologies in the market, but
not all of them can keep up with the demanding industrial environments. Long-
range, deep penetration and high interference immunity of the radio link are
key to reliable data connection over large industrial campuses. Also, you’ll
want to have a unified communications solution to extract data from existing
industrial networks and to support a new layer of granular, battery-operated
sensor networks for complete operational visibility. In this context, low power
consumption and high network scalability are other critical wireless criteria not
to overlook.

Cybersecurity

Cybersecurity is a collection of interacting processes intended to protect cy-
berspace and cyberspace-enabled systems (collectively resources) from inten-
tional actions designed to misalign actual resource property rights from the
resource owner perceived property rights.[222]

The exponential growth of the Internet interconnections has led to a sig-
nificant growth of cyber attack incidents often with disastrous and grievous
consequences. Malware is the primary choice of weapon to carry out malicious
intents in the cyberspace, either by exploitation into existing vulnerabilities or
utilization of unique characteristics of emerging technologies.[223]

The shortcomings that hinder information sharing of cyber threats can be
divided into eight categories, identified and described below. Many of these
challenges are complex and inter- related, but have been categorized for the
purpose of research and analysis.[224]

• Constitutional / Legal – Constitutional and legal barriers often prevent
firms from sharing information about cybersecurity threats and vulnera-
bilities. Shortcomings in this area include privacy concerns, as legal pro-
tections that mitigate the sharing of personal information(PI)/personally
identifiable information(PII) and competitive information are not con-
sidered comprehensive or strong enough. Many firms are also impeded
from sharing due to concerns about the risk of disclosure of trade secrets,
potential legal liabilities and actions that may be taken following the dis-
closure of cyber threats or attack details, and reputational damage that
ensues from these disclosures.
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• Technological – Technological barriers include a lack of interoperabil-
ity or compatibility be- tween the sharing organization and firm. In some
cases, organizations do not use a common language, such as Trusted Auto-
mated Exchange of Intelligence Information(TAXII) or Structured Threat
Information Expression(STIX), to share information about threats and
vulnerabilities, but rather create their own sharing language that has not
been widely adopted, making sharing increasingly difficult. Without a
sharing language that is simple and efficient, fosters uniformity, and cre-
ates clarity, sharing is often constrained. Moreover, the complexity of
information also acts as an impediment to sharing because the firm does
not have the software or hardware capabilities to digest the information
being shared, thus making it inoperative.

• Informational – Too much shared information and a firm’s inability to
process this data acts as a significant barrier. This informational barrier
makes finding valuable data hidden in a sea of irrelevant noise increas-
ingly difficult to manage. These barriers often include challenges such as
unreliable data, the impertinence of information shared, and difficulties
of validating data quality..

• Collaborative – Collaborative barriers include the challenges of estab-
lishing trust between a firm and sharing organization; the process com-
plexity of sharing information; the size of the group information is being
shared with; the type of participants receiving the shared information;
and a lack of reciprocity from other stakeholders or the problem of free-
riders. This barrier category also includes the risk of sharing with ri-
vals/competitors who may use the shared information to enhance their
competitive position.

• Managerial – Managerial barriers involve challenges around the man-
agement of data and relationships from the firm and cyber information
sharing organization perspectives. From the firm perspective, these barri-
ers include internal managerial risk aversion and mistrust, often discussed
as exposing the firm to “uncontrolled” risks, thus impeding the sharing
of information. This managerial barrier could also be called loss aver-
sion, leading to a status quo bias of not doing any more than already is
being done. Barriers from the perspective of the sharing organization in-
clude the challenges of having no agreement recognizing a single, common
centralized authority for establishing trust channels to exchange informa-
tion between a firm and organization, and a poor management of shared
information.

• Organizational – Organizational barriers to sharing information include
a firm’s inability to consume data due to limited resources, and an absence
of mechanisms to govern and control the use of sensitive information.

• Cost – The costs associated with sharing information about cyber threats
and vulnerabilities often serve as a significant barrier. Costs include the
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expenses associated with needing system technologies to share and receive
information, which may have a high cost for some firms. Many firms also
have limited human resources to process shared data and information,
so there are costs with the need to hire more personnel to handle this
type of analysis. In addition, barriers in this category include the cost of
false positives based on outdated and/or unreliable data provided by a
cybersecurity information sharing organization.

3.2.5 Self-X

Self-x capabilities are required to reach the higher levels of autonomy in future
production systems, and the autonomous nature based on the self-x capabilities
are needed to adapt to unforeseen environmental conditions and requirements.
Self-x enables autonomy and self-x complexity increases with autonomy level
that is directly related to autonomous features of systems. [191] define six levels
(from 0 to 5) of autonomy concerning self-x implementation, where level 0 is
no autonomy, and level 5 is full autonomy in all areas. According to the au-
thors, most recent applications of autonomy can be assigned to levels 2 and 3.
Non-deterministic behaviour of AI models and the lack of ‘explainability’ of the
decisions made by AI algorithms such as Neural Networks hinders the applica-
tion and implementation of Levels 4 and 5. Hence, AI technologies allow self-x
and autonomy, the limitations in current implementations and interpretations
of outcomes are technological challenges of enabling self-x capabilities.

Levels of Autonomy with respect to self-x implementation:

• Level 0 – No autonomy – human beings have full control without any
assistance.

• Level 1 – Assistance with respect to select function – human beings have
full responsibility and make all decisions.

• Level 2 – Partial autonomy in clearly defined areas – human beings have
full responsibility and define (some) goals.

• Level 3 – Delimited autonomy in larger sub-areas – system warns if
problems occur, human beings confirm solutions recommended by the
system or functions at a fallback level.

• Level 4 – System functions autonomously and adaptively within defined
boundaries – human beings can supervise or intervene in emergency sit-
uations.

• Level 5 – Autonomous functions in all areas including in fluctuating
system boundaries – human beings need not be present.

Hierarchy of Cyber-Physical Systems Self-X capabilities.

• Self-description (Autonomy level 0): The ability to (formally) describe
oneself using a defined language L. With different companies employing
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different self-descriptions methods, it becomes challenging to integrate
devices and types of equipment. To overcome this challenge, there should
be an agreement between vendors of industrial machines.

• Self-monitoring, -perception, -reflection, -diagnosis, -
assessment, (consciousness) (Autonomy level 1): The basis for
a more in-depth perception of one’s state is to record and know one’s
state utilizing monitoring, which sets the state of one’s system resources
(reflection) in relation to the environment or other systems. For this
purpose, the ability to diagnose and assess the consequences of an action
is part of self-reflection. In this context, the ability to develop conscious-
ness is also called self-reflection of self-reflections in connection with a
system’s ability to remember. Achieving this level requires constant
monitoring of resources and processes. However, the challenge here is
5 V’s of big data: volume, velocity, variety, veracity, value. To achieve
all these five properties requires technological advances in hardware and
software.

• Self-control, -regulation, -configuration, -stabilizing (Autonomy
level 2): Self-control and self-regulation, as a consequence of a recognized
necessary action, is primarily responsible for ensuring that the system can
maintain a stable state. The ability to self-configure provides the scope
of action in which self-regulation is possible. Self-control is still in the
early stages. Trusting machines that autonomously control and regulate
themselves is still accepted sceptically. Algorithms must be more reliable,
and regulations should change as the methods become more efficient.

• Self-adaptiveness, -generating, -optimizing, -improvement,
-learning, -evolution (Autonomy level 3): The ability of self-adaptation
serves to achieve an optimal operating state (self-optimization) under con-
tinually changing conditions and requirements employing self-generated
instructions for action. The optimum state can also be improved system-
wide or locally. By acquiring new information or capabilities, the system
can continuously go through an evolutionary process by which it provides
itself with new capabilities. This level of autonomy can be achieved by
collecting and learning from experience. However, the main challenge is
generating experience in the real-time and physical environment. It is
not possible due to technical and safety constraints. Simulation may help
make advances, but simulation software should improve as they resemble
the physical world as real as possible.

• Self-protection, -healing, -repair, -servicing (Autonomy level 4):
The self-protection of a system is the ability to arm itself against threats
or adverse effects that did not exist during the design. To this end, the
system uses self-servicing, self-healing, or self-repair to restore or prevent
individual system components or their connection to each other in the
event of unexpected disruption or failure. Self-protection can be achieved
by collecting possible threats to an individual machine and the whole
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system. Therefore, some threat monitoring and generalization solutions
should be developed to overcome challenges in achieving this autonomy
level.

• Self-organization, -modifying, -modeling, -design, -structuring,
-patterning, -assembly (Autonomy level 5): The self-organization of a
system is the ability to alter its internal structure without being influenced
by external control elements. This mainly serves to counteract emergence
effects, i.e., the occurrence of unforeseen interactions of complex systems.
External influences are possible but are considered on a higher level, which
reduces the internal complexity of the system to the outside, and only
steering influences are allowed. This level of autonomy has a big challenge
in integrating data from multiple sources. Artificial Intelligence methods
are becoming more robust but for specific data types. However, to achieve
this autonomy level, we need fast and robust algorithms to work with
various data sources such as images, text, audio, CAD, etc.

Data governance is one of the organizational challenges in enabling self-x
capabilities through data-driven technologies which are the basis for auton-
omy. Data governance includes data quality, data availability, data usability
and knowledge, data integrity and sovereignty, data security. Ensuring the
high-quality data which is accurate, consistent, and free of ”interference” is a
challenging task. Failing to meet the basic quality standards can affect the
use and analysis of data-driven algorithms. Different data-driven applications
require different formats of data, and making sure that the data is available
in requested format is another challenge of data governance. Data usability
enables easy search and query. For data usability, data must be structured
and documented, which might be a challenging task given the variety of data
sources. After data has been gathered and stored, it is important to maintain
its essential properties when converted and transferred, i.e., it is challenging
to retain data integrity and sovereignty. Given that autonomous systems are
connected with each other and with the outside world, data security always one
of the important challenges to solve.

3.2.6 Measurement performance

A recent report [225], conducted by the National Physical Laboratory (NPL)
in the UK, highlights how the use of autonomous systems is spreading in in-
dustry. These systems rely on artificial intelligence (AI) and machine learning
(ML) for decisions, for moving and operating; therefore, they need data to be
reliable, otherwise they could cause physical and mechanical danger to humans,
to machines, to the production systems.

The strategy of NPL for addressing the growth in use of autonomous systems
is mostly aimed to assess that transmitted data are of certain quality and
integrity standards, be traceable and that they present a defined certainty to
be treated as safe and reliable during training and operation. See Section 3.2.1
for extensive discussion about this topic.
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In the report the NPL forecast that in the UK:

• by 2025, the global market for telecommunications software will grow to
£290 billion;

• Internet of Things (IoT) market will see the number of connected devices
rise to 75.4 billion in 2025;

• connected and autonomous vehicles (CAV) could provide an income boost
up to £62 billion by 2030, plus a huge leap in job openings and a fall in
the number of serious accidents.

Since these aspects of Industry 4.0 are guided by data management, it is im-
perative that measurement science (metrology) leads the way to build a digital
infrastructure supporting digitalisation and that the system stands on trusted
digital standards and digital frameworks. This all contributes to enhance the
capacity of tracing the chains of data, certificate calibrations and quantify un-
certainties [225].

In previous years sensor perception models had already been presented [226,
227]; they aimed to improve the safety of autonomous systems, depending on
reliable assessment of the system’s context.

One research analysed context awareness by means of two fundamental pa-
rameters, safety and precision (it must be noted that the authors of [226] meant
“precision” as we intend to define accuracy): safe context meant that the in-
formation coming from sensors is not different from reality, while a precise
context meant that the information was not “coarser than necessary”. It was
obvious that an unsafe context might lead to danger or damage to humans and
machines, while an imprecise context promotes incorrect operations.

The environment information of this kind of systems always comes from
sensors that monitor the area surrounding the machine (i.e. sensors that scan
the street for autonomous vehicles), thus this information is an abstraction of
reality. The adherence of this abstraction to the real world depends on how
accurate the sensor is; it depends on many factors, such as timeliness, trust-
worthiness, completeness [228].

The evaluation methods for those measures are various [229]: image corre-
lation [230] uses the deviation of the ideal map from the one calculated by the
algorithm; path execution [231] computes a distance metric, and it uses both
false-positive paths and false-negative paths; therefore, given how accuracy is
defined by our previous model, it is better to minimize these false readings.

Vehicle localization used to be driven by reflective markers or electromag-
netic guides that helped giving accuracy to vehicle pose [232]; however, given
their high cost in terms of money and workforce, the huge number of false posi-
tive readings and the fact that those additional infrastructures tend to get dirty
or damaged, future developments aim to give vehicles the ability to self-localise
without external help [233]. This requires excellent accuracy in scanning the
environment and moving the vehicle.

One of the methods to evaluate sensors information for localisation pur-
poses [227] uses the high computational power of modern computers, that was
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not available before. It has also been tried in a controlled environment with
experiments that confirmed accuracy, robustness and reliability. However, stan-
dardization has been tried, but without success [234, 235], thus this method–and
others–are still not suitable for industrial purposes.

In the same way the field of robotics needs reliable and accurate information
from sensors, to build grid-based representation to solve problems like map
building, localisation, sensor fusion, path planning and obstacle avoidance [236].

Therefore future improvement will require better navigation and path fol-
lowing algorithms, to raise positional accuracy in order to meet industrial re-
quirements.

3.3 Social, Economic, and Environmental Bar-
riers and Challenges

Innovation represents the most important driver for business growth and com-
petitive advantage, yet manufacturers routinely face challenges around how to
successfully manage the process.

In Section 3.2, the authors presented a list of technical barriers and chal-
lenges still affecting the deployment of autonomy in manufacturing; however,
those are not the only issues that companies have to face when trying to achieve
such an improvement [180].

It can be argued that the most difficult barriers and challenges to overcome
are social, economical, and environmental. In this regard public exposure,
trade unions conflicts, the financial burden that such investments entail, and
the environmental impact of any activity must all be taken into account [180,
237].

The following section analyses and tries to better explain barriers and chal-
lenges with regards to social, economical and environmental aspects.

3.3.1 Social aspects

As described in a previous work [176], the concept of autonomy is closely linked
to decision-making processes which are enabled by massive data collection for
analysis, and modeling using artificial intelligence techniques. In this section,
such techniques will be studied under their social implications.

The following sections begin by analyzing the acceptance of autonomous
systems in the general community and highlighting some commonly known
negative aspects. Later, different concepts arise from the analysis of the main
barriers and challenges, taken from the concept of autonomous systems, under
the perspective of their social impact.

Social acceptance of autonomy

Acceptance in general terms is the process of approving something (tangible or
not) newly offered. In the context of social and technological acceptance pro-

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

81 (115)



DiManD Deliverable D4.1

cesses, it also plays a willingness for the use of the technological tool, process
or method at issue. This process normally changes over time and is unstable
over time. However it not only changes with time, but cultural and societal
structures are also important in individual and collective acceptance. Vari-
ous scientific disciplines (psychology, sociology, marketing and economics) are
related to and have mutual bonds with the study of this concept.

The introduction of autonomous systems in society is not always seen in
a positive light and it attracts much attention, especially in the contexts of
everyday technologies (e.g. autonomous driving systems). Trust in autonomous
systems has been analysed from numerous perspectives [238, 239, 240]. Building
the credibility of autonomous systems in general society is a very complex issue
[241] even inside similar society contexts.

In general terms, knowledge regarding AI and the autonomy concept is still
low in society, with a mixture of confused ideas, forecasts of utopias, and sci-
ence fiction storytelling as many people’s only exposure to the concept [240]
. It is difficult to correctly define what human intelligence is, hence it is also
difficult to apply to machines. Some concepts that are yet to be properly de-
fined theoretically have already been applied in practice. Most people have not
yet experienced autonomous systems which encourages a more vague definition
[242]. As one of the basic technologies enabling autonomy, AI is normally seen
as a “black-box” algorithm, which may result from non-interpretable machine-
learning techniques that are very difficult to fully understand. The role of
global education and training on general concepts of autonomy and the tech-
nologies that enable this feature will normalise the acceptance and will open
the way to new applications. In this sense, a great initiative taken by the
Helsinki University and the Reaktor Education consisted in globally educate
1% of the European society with basics concepts of AI to demystify its image
and empowering new applications1.

As more autonomous systems have been developed during the last decade
and introduced in society (mainly as tests or demonstrators), mass media cov-
erage not only show autonomous systems as a solution to many of current
problems, but also show the failures of these systems, with a particular fascina-
tion for fatal failures2 3, and publicly questioning who has responsibility in the
case of a tragedy4 5. However, after further investigations, some reports con-
cluded a wrong use of these systems by the human operators who are actually
in change of monitoring these tested systems6 which actually presents another
important challenge to deal.

Some reports sign the way we interact and control autonomous systems is
crucial for its real adoption [242]. In the past, research in autonomous systems
focused on the technological aspect more than anything. Nonetheless, once the
technology is mature enough requires to study social aspects for its introduction

1Elements of AI - Link
2Wikipedia - Death of Elaine Herzberg - Link
3NYT - Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam - Link
4BBC - Who is to blame for ’self-driving car’ deaths? - Link
5Forbes - What Happens When Self-Driving Cars Kill People? - Link
6BBC - Uber’s self-driving operator charged over fatal crash - Link

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

82 (115)

https://www.elementsofai.com/
https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.bbc.com/news/business-44159581
https://www.forbes.com/sites/cognitiveworld/2019/09/26/what-happens-with-self-driving-cars-kill-people/?sh=442c4e00405c
https://www.bbc.com/news/technology-54175359


DiManD Deliverable D4.1

in society and to avoid “disillusionment”, especially for such applications with
high impact in society (e.g. self-driving cars or service robotics). That is the
shift to human-centered design approaches and analysis of the socio-technical
contexts, focusing on cultural-, type- and milieu-specific differences in accep-
tance [241].

Another topic that can hinder the social acceptance of autonomous tech-
nologies is the riskiness autonomous systems take with its development or the
use of autonomous systems for some moral applications or uses. That is the
moral use of these technologies for the development of autonomous weapons and
its associated dangers7, forming a negative image of what autonomous systems
can actually do for society.

This idea also emerges from the common belief of machines working only
under certain discrete states (1/0, black/white, yes/no) and the absence of an-
alytical tools to differentiate wrong conducts from correct ones. Only humans
are commonly believed to have moral capabilities or features. When the Three
Laws of Robotics were published in Isaac Asimov’s novel8 it established the
initial concept of morality in artificial agents and the roots of a new philo-
sophical current in robotics. More recently, studies analyse the complexity of
an artificial morality in artificial agents. In addition, the Turing test9, and his
seminal paper [243]) proposed investigations in this field of artificial intelligence
by testing machine’s ability to manifest intelligent behaviours. Some other ex-
amples to test this morality problem are the commonly studied trolley problem
(based on the dilemma of the double effect problem [244]. More ethical issues
of autonomous systems are analysed in the following section.

Ethical issues

Ethical and social impacts of technology need to consider the fundamental in-
tertwining of human and technological domains as both cannot be separated as
their interactions are created dynamically in a process referred as co-production
[245]. This justified the importance of studying the social ethics on how au-
tonomous systems can be better designed (translation of values), on the partic-
ipation during the design process, or on understanding the interactions between
people and technology. For example, roboethics [246, 247, 248] is human ethics
applied to robotics in two levels: adoption of ethical theories, and the robot
ethics or machine ethics.

Any application of autonomous system must meet ethical principles. How-
ever, from a comprehensive view, many challenges are established by the prac-
tical application of ethical principles on autonomous systems. However, many
organizations have launched a wide range of initiatives to establish ethical prin-
ciples for the adoption of socially beneficial systems. This high volume of
proposed principles tends to become overwhelming and very confusing. [249]
recently reported a unified framework of principles for AI which establishes the

7NYTimes - Report Cites Dangers of Autonomous Weapons - Link
8Wikipedia – Three Laws of Robotics - Link
9Wikipedia – Turing test - Link

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie

grant No. 814078

83 (115)

https://www.nytimes.com/2016/02/29/technology/report-cites-dangers-of-autonomous-weapons.html
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
https://en.wikipedia.org/wiki/Turing_test


DiManD Deliverable D4.1

principles aiming at avoiding overlapping and ambiguity for a practical imple-
mentation: i) beneficence; ii) non-maleficence; iii) autonomy; iv) justice; and
v) explicability. The work emphasises the concept of explicability as the main
enabler for all principles through its division in the epistemological intelligibil-
ity concept (how does it work?) and the ethical sense of accountability (who is
responsible for the way it works?).

According to [92], in order to have a real impact on society, ethical con-
straints and aims should shape technology in the design phase in the form of
requirements for systems, engineering and software design, as it is in this phase
where they actually have an impact. Many works suggest the need for adopting
a “fairness-first” approach, instead of evaluating algorithmic bias/fairness as an
afterthought [250, 251]. Fairness by design should compel developers to ensure
that the very conception and design of AI systems is done in a manner that
prioritizes fairness.

Nonetheless, following sections will describe more in detail some of the social
practices and principles to face recurrent specific challenges when developing
autonomous systems, based on the European Commission’s European Group on
Ethics, which established following principles [252], which are: i) human dignity,
ii) human autonomy, iii) responsibility, iv) justice, equality and solidarity, v)
democracy, vi) rule of law and accountability, vii) security, safety and mental
integrity, viii) data protection, and ix) sustainability.

Human dignity

Dignity is understood as the recognition of the inherent human state of being
worthy of respect. Human dignity limits the determinations and classifications
of persons. It proposes debate about empathy in human-robot interactions
(HRI) and whether we can empathise with robots or we should do since they
do not have a consciousness in a traditional sense [253].

Human dignity also implies that there have to be limits to the ways in which
people can be led to believe that they are interacting with human beings or
with algorithms and smart machines. This issue can be found in manufacturing
contexts when a human operator directly interacts or is suggested by the system,
for example, to meet manufacturing objectives or to follow safety rules (see
Section 3.2.3). Beyond the questions of data protection and privacy, we may
find an answer to the question if people have the right to know whether they
are dealing with a human being or with an AI artefact. Moreover, the question
arises whether there should be limits to what AI systems can suggest to a
person, based on a construction of the person’s own conception of their identity
[252].

Autonomy in control decisions

Considering the capacity of decision-making in autonomous systems, it is im-
portant to include security issues which involve: i) external safety for environ-
ment and users (see Section 3.2.3), ii) reliability and internal robustness (see
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Section 3.2.2, and iii) the emotional safety for human-machine interactions and
motivation.

Autonomy in control decisions defines how machines honour the human
ability to decide when and how to delegate decisions and actions to them.
In contrast to the automation of production, it is not appropriate to manage
and decide about humans in the way we manage and decide about objects or
data, even if this is technically conceivable. Human beings ought to be able to
determine which values are served by technology, what is morally relevant and
which final goals and conceptions of the good are worthy to be pursued. The
principle of Meaningful Human Control (MHC) establishes the constrains the
control of autonomous systems and thus who is morally responsible for their
decisions (see Section 3.3.1) which, in practice, cannot be left to machines, no
matter how powerful they are [252].

Even MHC is mainly studied under the field of automated weapons, it may
be also applied in the manufacturing field as there exist potential situations
which may affect human integrity. This concept captures three main ideas [92]:
a) simple human presence or “being in the loop” is not sufficient condition for
being in control of an activity; b) making a substantive contribution to an ac-
tivity through one’s intentional actions might not be a sufficient condition for
meaningful control either, which refers to the capacity to respond appropriately
under certain circumstances and/or to appreciate the real capabilities of the
autonomous system; c) whereas some forms of legal responsibility take simple
forms of causal control over events, other forms (typically criminal responsi-
bility) require stricter control conditions of knowledge, intention, capacity and
opportunity and, then, the attributions of legal responsibilities of not grounded
control conditions turn out to be nor only morally unfair but also difficult to
enforce in tribunals (principle of responsibility).

Responsibility

Autonomous systems must be only developed and used in ways that their re-
sults and effects align with a plurality of fundamental human values and rights.
The philosophical concept of moral dilemmas and common morality apply here,
which (very simplified) stand for “some behaviours that are in some sense, gen-
erally wrong; and that other behaviours are generally right” in an universal
manner [254, 255]. Prior to the development of a technology, it is required
to asses the dangers and risks under some developments and researches, po-
tential uses or misuses in future, i.e. the main consequences. One extended
example is the moral use of autonomous technologies for the development of
robotic autonomous weapons (NYTimes - Report Cites Dangers of Autonomous
Weapons). In this case, the moral question emerges: “should the decision to
take a human life be relinquished to a machine?” [256]. Possible responses to
this question should be analysed at the initial conceptualization or initial steps
of their development.

In [92], two conditions are proposed for moral responsibilities assessment as
a justification of MHC. The condition of tracking refers to the relation between
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human moral capacities to respond to relevant moral reasons and system ac-
tions. In some sense, it refers to the person’s total knowledge of the actions
taken by the autonomous system and its results (or truth-tracking account of
knowledge). In contrast, the tracing condition tries to capture the basic intu-
ition that a human agent may be responsible for an outcome even if he does
not satisfy the condition for responsibility at the time of the action.

Other extended examples arise with the endowment of ethical mechanisms
to artificial cognitive agents as a response of some issues likely to arise (i.e. the
implementation of flexible safety rules, see [176]) in the relationship between
these autonomous systems and human beings [257]. Machine ethics is a field
“concerned with ensuring the behaviour of machines toward human users, and
other machines as well, (and what) is ethically ” [219]. As previously discussed,
the definition of artificial moral agents (AMA) and artificial autonomous moral
agent (AAMA) is made [217]. Even those machines are technologically real-
izable, the role of the Moral Lag Problem raises some additional concerns: if
humans cannot be as moral as they should or could be, how can machines be
moral? Even humans can make up diverse moral claims in contrast to machines
that are left with a static account of morality as they would only be able to
simulate, rather than to make judgments (lack of pluralism of human moral
judgements). Nevertheless, some authors defend the thesis that the rise of AI
and robots will “suppress our moral agency and increase the expression of moral
patience” as a result of the tendency to suppress the expression of our capacity
for moral agency and accentuate the expression of moral patiency [258].

Furthermore, cognitive tools and actions no longer need to be programmed
by humans. Some examples of these “self-programming” algorithms are Google
Brain (Google Brain Team), which builds AI better and faster than humans;
or how AlphaZero develops itself from scratch in 24 hours how to manage some
games’ rules beating the best players (AlphaZero: Shedding new light on chess,
shogi, and Go).

In addition, is of the human responsibility to ensure basic preconditions for
life, preservation of a good environment for future generations, ensuring the
priority of environmental protection and sustainability. This topic is deeply
covered on Section 3.3.3.

Traceability, liability and accountability

Besides moral responsibility, a big concern is the legal responsibility: who
should be found accountable for the actions of an autonomous system? who is
to compensate the damages for such actions? In the case there is an operator
behind the machine or system, is the manufacturer legally responsible? or is it
the operator?

Statements like [252, 192] claim that because of the nature of the artificial
systems, some aspects of human agency could not be applied to them. Despite
that, the concept of liability, blame, and accountability should be extended to
include these emerging systems and to enable the application of insurability as
well.
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To avoid addressing these matters unevenly, it is urgent to create a global
legal framework to regulate autonomous systems, protect human rights, and
implement effective mitigation systems.

Justice, equity and solidarity

This principle defines global justice, equality in access, and fair distribution of
the benefits and advantages that autonomous systems bring. Additionally, not
only is important the advantages when an autonomous systems is deployed, but
also the access to education as previously exposed is an important factor for
its acceptance in society (see 3.3.1). Vigilance is required with respect to the
detailed data on individuals which could put pressure on the idea of solidarity,
and which may undermine social cohesion and give rise to radical individualism
[252].

As one of the main key enabling factors of autonomous systems [176], trained
models based on data and AI artefacts, like most human creations, tend to
reflect the goals, knowledge, and experience of their creators. They also draw
from the strength and weakness of the data that is used to train them and how
it is trained [250]. Statistical models, including those created with machine
learning techniques, can reproduce biases taken from the historical data used to
train them. The use of this techniques by institutions (enterprises or managing
levels at manufacturing companies) to automate decisions that affect people’s
(suppliers, clients or operators) rights and life opportunities then reflect these
biases.

As per the bias definition (as a deviation from standard) usually has a
negative connotation. So that, it is understood as something to be avoided
because of its problematic nature. However, the statistical biases might be
neutral but a sign of a different concept, moral biases. These observations are
relatively uncontroversial on their own, but they already present a problem for
the notion of “algorithmic bias” [94]: there are multiple, different categories of
bias that are often treated as equally problematic or significant, even though
not all forms of bias are on a par. Researchers have begun developing new
techniques to help detect and address these biases as consequence of ML trained
datasets lacking in diversity and inclusivity of minorities, as it is one of the most
important challenges that AI techniques faces.

On the other hand, many machine learning fairness practitioners rely on
awareness of sensitive attributes i.e. access to labelled data about people’s
race, ethnicity, sex, or similar demographic characteristics to test the efficacy
of debiasing techniques or to directly implement fairness interventions [259].
The use of computing solutions can help practitioners and analysts to measure
long-standing social problems and to diagnose how they manifest [260].

It is vital to be aware of these risks and minimize potential biases, for
example, when deciding [261]: i) which ML technique or procedure to use,
and ii) what data set they want to use. Biases not only may result in unfair
results regarding sex, gender, ethnicity or skin color; but also, regarding age or
disabilities.
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Some sources of algorithmic bias are [94]:

i Training data bias, through deviations in the training or input data pro-
vided.

ii Algorithmic focus bias, through differential usage of information in the
input or training data, e.g. the use of morally irrelevant categories to
make morally relevant judgements.

iii Algorithmic processing bias, e.g. by using a statistically biased estimator
in the algorithm.

iv Transfer context bias, when the algorithm or resulting model is employed
outside of their particular context of operation.

v Interpretation bias, or misinterpretation of the algorithm’s outputs or
functioning by the user, or by the broader systems.

So that, in general terms, efforts to mitigate biases must consider following
steps [94, 250] :

i Creating cross-disciplinary teams of data scientists and social scientists.

ii Identify problematic bias, by assessing whether a given bias is problematic
when all things are considered.

iii Intervention on problematic bias, understanding the relationship between
the autonomous system and the ethical and legal norms for the relevant
contexts. In case no defined norms exist, build fairness measures into the
assessment metrics of the program.

iv Ensuring that there is a critical mass of training samples so as to meet
fairness measures.

v Adopting debiasing techniques.

Considering last points, race and gender biases are further analysed accord-
ing to the accessed literature.

• Race.

Apart from the aforementioned general considerations, current method-
ologies fail to adequately account for the socially constructed nature of
race and, instead, they adopt a conceptualization of race as a fixed at-
tribute [262] . The concept of fairness, not only is situational, evolving,
and contested from a number of philosophical and legal traditions, but
also can only be understood in reference to the different social groups that
constitute the organization of society. Consequently, the vast majority of
algorithmic fairness are specified with reference to these social groups,
often requiring a formal encoding of the groups into the dataset or al-
gorithms, defined as “protected classes”, and whose construction process
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is fraught: the construction of categories has a long history of political
struggle and legal argumentation.

General tendencies are identified when using race in algorithmic fairness
research: i) simplistic conceptualization of race as a single dimensional
variable that could delete the complexity of racial categories; and ii) the
little attention put on the process conceptualising and operationalising
for mitigating differences. Main implications for using race in algorithmic
fairness [262] require the multidimensionality of race categories concep-
tualization and their optimization, to perform disaggregated analysis to
understand and identify markers of social inequality, to understand the
frame limitations and, finally, to disseminate these decisions together with
the main results.

• Gender.

Some works expose that this problem appears even at early stages of some
research fields, AI research, for example. Some dimensions of the gender
bias that can end up strengthening society’s biases are [250]:

i Under-representation of women in engineering and research fields.
For example, when the Institute of Electrical and Electronics Engi-
neers (IEEE) instituted a Hall of Fame to acknowledge the leading
contributors to AI, no one of the ten persons on the list was a woman

ii Perception and stereotypes of the real world, which are built from
the data coming from the world and is used to train algorithms. In
this sense, a solution for stereotypes is the neutralization of language
suggested to enhance fairer outcomes in natural language processing.

iii Disregard of trans and non-binary people. If gender bias against
women is still a problem, what can be expected in the case of other
genders, which are not even considered by tech companies? Even
worst is to be aware that these companies do not control how gender
identity is used in their algorithms [263].

Proposed solutions tend to improve the representation of women in AI re-
search (as researchers and beneficiaries), from the perspective of “fairness
by design”.

Data protection and privacy

Includes the right to protect personal information and the right for privacy.
With regard to the implications of autonomous systems on private life and pri-
vacy, two new rights are under debate: the right to meaningful human contact
and the right to not be profiled, measured, analysed, coached or nudged [252].
Specifically in the manufacturing field, these issues might appear when moni-
toring operators behaviour during production tasks for safety purposes or for
the establishment of individual labour ratios or performance indices.
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In addition to the challenge of facing algorithm biases (see Section 3.3.1),
ethical problems in decisions surrounding the data collection and annotation
process still remains an overlooked part of the machine learning pipeline [264].
Archives, libraries and datasets are fields dedicated to human data collection
for posterity which have grappled with questions of ethics, power, privacy and,
specially, consent. Some works summary of critical needs for fair practices
among industry ML practitioners and identify the lack of industrial standard
for “fairness-aware data collection”. The lack of any systematic process for
generating datasets has spurred researchers to call it the “wild west” [265].

In a collaborative manufacturing ecosystem, crowd-sourcing [264] is a sta-
ple approach in collecting human labels for datasets aimed to reduce costs and
speed up data collection by outsourcing to human participants are constructed.
Crowd-sourcing mechanism provide a set of fixed labels for participants to
choose from, which imply adversarial relationships between the researchers and
the participants and face criticism for imposing labels onto individuals. So that,
the aim is to widen the channel of user input in data collection with their con-
sent, to democratize the collection process and give agency to minority groups
to represent themselves. Data power or ownership has been under discussion as
well [264], resulting in the development of consortia models, which are set up by
institutional frameworks and services to share resources. The main advantage
is the ability to gain economies of scale. However, has been under criticism for
creating bureaucracy, unnecessary committees, delay and new forms of power
imbalances which hamper their realistic implementation.

Techniques to capture users’ attention or induce addictive behaviours are
now recognised to be at the core of the business models for the most powerful
technology companies (The guardian - ‘Our minds can be hijacked’: the tech
insiders who fear a smartphone dystopia), which are increasingly relying on
AI/ML systems to collect and extract economic value from any type of data.

Standards become more difficult to implement as objectives move farther
from final market transactions and ethical practices in data collection are often
overlooked from the distance. The archival codes of ethics list the core values
of archivist to be to promote access, ensure accountability and transparency.
In practice, archivists are not positively rewarded but only under pressure of
code of conduct in their work organizations. In addition, a cross-institutional
organization may help ensuring that ethical principles withstand profit-driven
motives.

In response, [264] propose to take actions at macro and micro levels:

• Macro (community, private institutions, policy makers and government
organizations):

i Congregate and develop data consortia.

ii Establish professional organizations to work by membership to im-
prove introduction to ethical guidelines.

iii Support community archives.

iv Develop a subfield dedicated to the data collection and annotation
process.
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• Micro (individual researchers, practitioners and administrators):

i Define and modify mission statements.

ii Hire full-time staff on data collection tied to professional standards.

iii Work towards public datasets.

iv Adopt documentation standards keep it rigorously.

v Develop substantial development policies with domain expertise and
nuance of data source.

vi Make informed committee decisions on discretionary data.

Democracy in policies

To solve most of the aforementioned barriers and challenges, democratic de-
bate and public engagement (in a global spirit of cooperation) should guide
key decisions on the regulations of AI developments and applications. Through
education and access to information, everyone could understand risks and op-
portunities and become empowered to participate in decision-making processes
for the society of the future [252].

For example, the European Commission built ithe European Group on
Ethics in Science and New Technologies (EGE)10 in 1991, aiming at provid-
ing high quality, independent advice on ethical aspects of science and new
technologies in relation to EU legislation and policies. In 2015, the United Na-
tions Interregional Crime and Justice Research Institute (UNICRI)11 launched
its programme on AI and Robotics to cope with the legal, ethical and societal
concerns and challenges of artificial intelligence and autonomous systems.

3.3.2 Economic aspects

The basis of existence of any organisation is anchored in economic profitability
[266]. This means ensuring good monetary returns, liquidity and profitability
on production. This in turn should outweigh the cost of investment. Therefore,
companies before investing ensure long term economic sustenance and create
business cases to justify capital expenditure [267].

A major economic concern with the implementation of Industry 4.0 as-
pects in manufacturing environments is that currently very few companies have
mature digitalization capability along their value chains (both horizontal and
vertical) [196]. The digitalization capability enables business services and value
chain outsourcing. The main drivers for adopting technology in manufacturing
industry is a desire to enhance productivity, production flexibility, and increase
output. [268] cites the main motivation of Industry 4.0 to be the development of
new services and models for leveraging competitive advantage. The promotion
of customer loyalty to the product, quality improvement and capability to pre-
dict faults and risk in the product are also essential to the adoption of Industry

10European Group on Ethics in Science and New Technologies (EGE) - Link
11UNICRI - Centre for Artificial Intelligence and Robotics - Link
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4.0. However, in spite of the explored advantages the underlying requirement
of infrastructure complexity, huge investment costs and data privacy hinder the
implementation of the principle.

[180] explores the main challenges to implementation, listing the lack of
available resources, skill-gap, infrastructure unavailability, incompatible pro-
cesses, variation in demand, data security, compatible solutions and legacy
technology as the main barriers. Economic challenges for manufacturing indus-
tries are concerned with the economic viability or justification of the required
investment for the implementation. In some cases the investment costs is as-
sumed to be on higher end even than the company growth per term. This makes
it difficult to provide a solid rationale for such investment. Also, the promise of
resulting sales growth in relation to is not always strongly supported by data.

[180] factors in financial resources and profitability to establish the driving
forces and barriers in terms of economic understanding. The cost reduction
following decrease in human resource cost, inventory management and opera-
tion cost is barred by lack of financial ability, limited knowledge of return and
profitability as a result of investment and shortcoming of procurement process.
Mostly the procurement process in industry revolves around quoting and ten-
dering process which could be time consuming and non-linear. Setting up a
standard approach to this process may result in economic backlog.

The research done by [269] studied the implications of Industry 4.0 real-
isation in current manufacturing environments. The research highlighted the
increase in efficiency and productivity witnessed due to smart manufacturing.
They found a lack of investment plans and practical guidelines for Industry 4.0
implementation as the major hurdles. These need to be developed at regional
and national levels to support effective transition of current manufacturing
infrastructure to a smart manufacturing environment. Along with this with
stakeholder engagement can play a critical role in development of these guide-
lines [270]. The marginalisation of regional space is important for integration
at that level and then from that into a central economic structure.

The other economic implications of Industry 4.0 include work environments,
skill development, growth in potential, sustainability, along with digitalisation
and application of intelligence in manufacturing.

• With respect to work environments, automation and robotics may replace
a lot of jobs performed by labour leading to economic shift. A significant
skill change paradigm will enable new employment opportunities bringing
a net employment increase [271].

• Skill requirement will also import economic outlook. At the initial level
it will require transition however this transition promises long term in-
centives12). There will be a major skill requirement in networking, IT
and IoT. The data requirements of industry 4.0 would assert more effec-
tive cyber security and data architectures within the system. This will
directly effort the economic outlook of the company.

12https://www.controlglobal.com/blogs/guest-blogs/must-have-skills-for-industry-4-0/
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• With new data collection, manipulation and decision making capability
new growth potential may be witnesses as products and parts become
smarter i.e. capable of making decisions about themselves.[205]

• Digital twins [272] can simulate conditions of the part or product to help
understand the maintenance of the product to match long term economic
goals. However, these require long term investment, communication ca-
pability and computing requirements.

3.3.3 Environmental aspects

The environmental aspects of industrial production were once considered as a
source of unnecessary expenses, but many steps forward have been made in
the last thirty years. Companies have been driven to think more about how to
handle resources, emissions, and waste. Moreover, they have started to realize
that being environmentally friendly could even be a source of profit [273].

Being known to the public as someone who cares about our planet’s sur-
vival gives people one more reason to become customers, especially now that
awareness about environmental problems is high. On the other hand limiting
the cost of resource wasting and of useless energy consumption could constitute
a direct source of income.

Therefore one recent focus has been waste reduction and decrease of material
usage, along with water and energy use control [274].

However, now that industry has reached a reasonable level of environmental
conscience, the new challenges of Industry 4.0 have risen and become the focus
of future development.

Perhaps the most important challenge is to contain and understand how to
reduce the speed of climate change [275], along with trying to efficiently man-
age natural resources and energy sources. Companies have the biggest role in
avoiding being careless with the environment. They need to develop a sustain-
able mindset, aiming at addressing climate breakdown and resource scarcity,
and creatively look for sustainable solutions to production problems [276, 275].

Industry 4.0 is driven by data management and data gathering [181], and
as a consequence other critical environmental initiatives are focused on the
potential that this huge amount of information has over green tasks.

According to [277], potential improvements comes from better data quality
and less discretion for management over what is measured and how it is re-
ported, since data is always available in real-time. Moreover it means that pre-
viously unknown information could be gathered and that their transfer should
be smoother and quicker.

Cyber systems, dominated by sensors’ presence, could record material and
energy consumption by the minute, and find patterns that highlight useless
waste on which companies could act.

Again, [277] writes that potential activities in the future could be:

• establish which sectors will be most sensitive to environmental activities
impact;
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• examine the size of companies most affected by Industry 4.0;

• look at the impact on roles and communications between managers;

• what impact will managers have on environmental issues accounting;

• highlight the benefits that environmental accounting have and promote
this activities.

Therefore the focus should shift towards making it easier to tackle envi-
ronmental challenges by collecting and analysing huge amounts of data, and
to show what impact environment related activities could have on accounting
in companies, so that they would be more interested in investing: this would
create a virtuous circle that should bring long term benefits as far as emissions
and waste are concerned.
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3.4 Barriers and Challenges Discussion & Con-
clusions

It is now clear that the way from a conventional manufacturing system, through
to distributed intelligence implementation, and into a fully autonomous factory
is fraught with several barriers and challenges.

Since the first Industrial Revolution almost 250 years ago, manufacturing
businesses have faced almost constant disruption – from geo-political turmoil
and economic decline, to technological advancements and fast-changing cus-
tomer needs [278]. Any barrier in the field of digital transformation leads to a
slow down or complete termination of the digital change in enterprises.

In order to achieve a more effective production, these barriers and challenges
should be faced and overcome. As it is often the case, bigger multinational
ventures should be at the head of the evolution of manufacturing system towards
maturity; thanks to their superior economical power, they should consider the
superior driving forces that make this development worth the investment, and
also draw a path for smaller companies to follow.

As seen along the work and apart from the benefits autonomous systems
might bring to the manufacturing ecosystem, technological developments have
social, economical and environmental implications that must be considered to
meet responsible research and innovation actions, supported by the European
Commission13. Especially, all those changes with high impact on society as it
does the new I4.0 paradigm. Previous sections analysed some actions to face
all challenges and barriers. However, the general discussion presents the strong
necessity of building global and democratic policies to support and to encourage
the implementation of all technological developments. Only with a responsible
research and a common implication, society will succeed in its most ambitious
propositions.

13European Commission - H2020 - Responsible research & innovation - Link
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[60] Maŕıa Urdaneta et al. “Development of a novel autonomous robot for
navigation and: Inspect in oil wells”. In: Control Engineering and Applied
Informatics (2012).

[61] Daniel Schmidt et al. “Climbing robots for maintenance and inspections
of vertical structures - A survey of design aspects and technologies”. In:
Robotics and Autonomous Systems (2013).

[62] Akihiko Nagakubo et al. “Walking and running of the quadruped wall-
climbing robot”. In: Proceedings - IEEE International Conference on
Robotics and Automation. 1994.

[63] Bing L. Luk et al. “Intelligent legged climbing service robot for remote
maintenance applications in hazardous environments”. In: Robotics and
Autonomous Systems (2005).
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Versions

D4.1 Requirements specification for Distributed Manufacturing Systems
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