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Summary

The advent of smart manufacturing and the exposure to a new generation of technological enablers
have revolutionized the way how manufacturing processes are carried out. Cyber-Physical Pro-
duction Systems (CPPS) are introduced as the main actors of this manufacturing shift. They are
characterized for having high levels of communication and integration and for computational capa-
bilities that led them to a certain level of autonomy. Despite the high expectations and vision of
CPPS, it still remains an exploratory topic and several issues have to be clarified i.e. methodologies
for its design and implementation.

Multi-Agent Systems (MAS), have been widely used by software engineers to solve traditional
computing problems e.g. banking transactions. Because of their high levels of distribution and
autonomous capabilities, MAS have been considered by the research community as a good solution
to design and implement CPPS.

This work first introduces a background and literature review associated with the implementation
of multi-agent manufacturing solutions in a product-driven manufacturing context. The research
gap and aimed contribution of this deliverable is associated with the development of an integrated
framework for agent-based process control, monitoring, optimal machine selection, and detailed data
model specification. These ideas are later conceptually showcased in a real manufacturing product on
a shop-floor with flexible transportation. The final section of this deliverable describes and presents
conclusions, discussion, and future work ideas.
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Chapter 1

Introduction

With the advent of Industry 4.0, the manufacturing landscape is undergoing a significant transfor-
mation driven by the integration of advanced technologies such as the Internet of Things (IoT),
artificial intelligence, and big data analytics. These technologies are enabling the development of
intelligent, interconnected, and self-adaptive production systems, which are essential for manufac-
turing companies to remain competitive in the dynamic global market. The ability to rapidly adapt
to changing production demands and requirements has become increasingly critical in this context.

A flexible and self-configuring production system is necessary to address this challenge, one
that can autonomously adjust production processes, resource allocation, and machine configuration
in real-time to optimize production efficiency, reduce downtime, and improve product quality. In
recent years, the integration of multi-agent systems and machine learning techniques has emerged
as a promising approach to develop such self-configuring production systems.

In this deliverable, we present a comprehensive framework for a self-configuring production sys-
tem based on multi-agent systems and machine learning. The proposed framework encompasses
several key components, including:

1. Data model specification: The data model is designed to represent the manufacturing domain
and related entities, including products, processes, machines, and resources. This standardized
representation enables effective communication and data exchange among the agents in the
system.

2. Multi-agent-based negotiation: The multi-agent system enables decentralized decision-making
by allowing individual agents to negotiate and cooperate to achieve their goals. The negotiation
process ensures that resources and machines are optimally allocated to production tasks.

3. Machine monitoring: Continuous monitoring of machine performance and condition is cru-
cial for identifying potential issues and ensuring timely maintenance or reconfiguration. The
framework integrates machine monitoring techniques, such as sensors and data analytics, to
provide real-time feedback and support adaptive decision-making.

4. Optimal machine selection: The framework employs machine learning algorithms to identify
the most suitable machines for a given production task, considering factors such as capability,
availability, and efficiency. This selection process ensures that production resources are utilized
effectively and that product quality is maintained.
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5. Machine configuration selection: To support the dynamic adaptation of the production system,
the framework includes methods for selecting and implementing the most appropriate machine
configurations based on current production requirements and constraints.

As a proof of concept, we apply the framework to the manufacturing of a manual expanding
mandrel, a tool used in metalworking and woodworking to hold and expand a workpiece. The
effectiveness of the framework is evaluated by its ability to optimize the manufacturing process,
reduce downtime, and improve the quality of the final product. The results demonstrate the potential
of the proposed framework to increase the flexibility and efficiency of production systems and provide
a solid foundation for future research in this area.

The structure of this paper is organized as follows. Chapter 2 provides an overview of the
background concepts and techniques relevant to this study, including intelligent product-driven
manufacturing, semantics and data modeling, multi-agent systems in smart manufacturing, machine
learning in smart manufacturing control, and cloud computing technologies. Chapter 3 presents a re-
view of the literature related to intelligent products, machine learning for manufacturing control and
configuration, agent-based solutions for manufacturing control and configuration, as well as cloud
computing for manufacturing control and configuration. In Chapter 4, we introduce the proposed
framework in detail, outlining the underlying assumptions, the data model, the negotiation strat-
egy, and the methodologies for machine monitoring, configuration, and optimal machine selection.
Chapter 5 demonstrates the applicability of our proposed framework through a case study, showcas-
ing its practical implications and effectiveness. Finally, Chapter 6 summarizes our conclusions and
discusses potential future work to further enhance and extend the proposed framework.

ACTIONS
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Chapter 2

Background and Literature Review

In this section, we aim to provide a comprehensive overview of the key concepts that are relevant
to the objective of this deliverable. Those represent an initial understanding to make autonomous
manufacturing solutions. Also, we aim to provide a comprehensive analysis of the literature aligning
relevant concepts for the control and configuration of manufacturing resources. This will be used to
establish the rational and concrete motivation for this work.

2.1 Intelligent product-driven manufacturing

As manufacturing industry is moving from supplier-driven towards a customer-driven market, where
customers are giving greater level of customization possibilities, changeover time has to be reduced,
and re-routing of deliveries and handling of material can change, it is necessary to change traditional
supervisory or centralized driven manufacturing design. Intelligent products can make the produc-
tion planning and control more effective [1, 2] by providing explicit details of manufacturing design
making them ”intelligent”. The definition of intelligent product was coined by M. McFarlane [3] in
the early 2000s. It is described as a physical and information based representation of an item for
retail which:

e Posses a unique identification.

e Is capable of communicating effectively.

e Can retain data about itself.

e Deploys a language to display its features.
e It is capable of making decisions.

Information from an intelligent product can have for example transportation details, guidelines
for routing adjusting and the information and rules that represent the information of how the product
has to be managed [2].

The concept of intelligent product has been explored in the literature under the umbrella of multi-
agent systems i.e. product agent [41, 5, 6]. A product agent can communicate with other agents in
the shop-floor (e.g, resources) to coordinate necessary manufacturing operations and generate self-
organization. Products as a result of assembly operations are composed of parts i.e. part agents [7]
or work piece agents [3] responsible for the process plan. In [9] an AGV agent (which contains the
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plan of the product) transports it to the needed resources. The information of the manufacturing
information as a data base agent and decision making agent has been proposed to facilitate the
information exchange [10]. The concept of order agent [ 1] encapsulates the information of one or
more products that have to be manufactured.

2.2 Semantics and data modelling

New products resulting from product development processes have been represented principally by
geometrical models. However, the growing need for customized products and shorter production
times demands information, beyond geometrical aspects, to support production planning while re-
taining complete product information in the existing product lifecycle management (PLM) systems
[12]. Given the characteristics of current PLM systems, information models have been proposed as
an effective way of sharing this information in a machine-consumable representation. An information
model is defined as ”a representation of concepts, relationships, constraints, rules, and operations to
specify data semantics for a chosen domain of discourse” [13]. Having a well-defined model provides
a stable and shareable information structure for the studied domain [13].

Data exchange enables communication between the different actors in a digital manufacturing
scenario. This communication is facilitated by the use of Well-defined data models that provide
stable and organized structures for the exchange of information within a specific domain [13]. To
date, several studies had proposed full or partial data models in the manufacturing field addressing
different aspects, processes, or actors. For instance, a partial model for capability representation is
proposed by [14] in which the minimum information requirements for atomic and complex capabilities
with a focus on robotic handling tasks. In [15, 0], information models, as well as behavior models for a
multi-agent scenario were defined to relate machines or devices to the production line. Similarly, [11]
presented a more detailed relational database model for the configuration, control, and monitoring of
a cloud-based manufacturing scenario. Other models were proposed with a higher level of abstraction
or as support for complex activities such as supplier selection and order allocation presented by [10].

2.3 Multi-agent systems in smart manufacturing

Many advanced manufacturing schemes have already been proposed aiming to overcome the draw-
backs of the current production lines, e.g., the flexible manufacturing system (FMS) and the agile
manufacturing system (AMS). Among these schemes, the multi-agent system (MAS) is the most
representative one, where the manufacturing resources are defined as intelligent agents that nego-
tiate with each other to implement dynamic reconfiguration to achieve flexibility. Nowadays, the
emerging cyber-physical system (CPS) presents a significant opportunity to implement smart man-
ufacturing. The CPS can arm the MAS with emerging technologies (e.g., the Internet of Things
(IoT), wireless sensor networks (WSN), big data, cloud computing, embedded systems, and mobile
Internet). Multi-agent systems have been applied to the manufacturing domain a lot.

In the context of manufacturing control and configuration, agents may represent various entities
within a production environment, such as machines, resources, products, or processes [6]. Each agent
has its own set of capabilities, knowledge, and objectives, enabling them to function independently
and adaptively in response to changes in the manufacturing system [4].

One of the primary advantages of agent-based solutions is the decentralization of decision-making
processes, which allows for greater flexibility and adaptability in the face of dynamic production

requirements [16]. Instead of relying on a centralized control system, agents can communicate
L B This project has received funding from the European Union’s 8 /43
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and collaborate with each other to make decisions and optimize their actions based on local and
global objectives [17]. This decentralized approach promotes better resource utilization, reduces
system bottlenecks, and improves the overall efficiency of the production system [9]. Furthermore,
agent-based solutions can be easily scaled to accommodate the growth or contraction of production
systems, as new agents can be added or removed without disrupting the overall system functionality
[15].

Several studies in the literature have explored the application of agent-based solutions for various
aspects of manufacturing control and configuration [18, 11]. Some of these applications include
resource allocation, machine scheduling, order processing, and production planning [19, 20]. In
these studies, agents are typically designed to negotiate and cooperate in order to allocate resources,
select machines, and schedule operations based on various criteria, such as minimizing production
time, maximizing resource utilization, or minimizing production costs [11, 7]. Additionally, the
incorporation of machine learning techniques, such as reinforcement learning and artificial neural
networks, further enhances the adaptability and intelligence of these agent-based solutions [10, &].
As a result, agent-based solutions for manufacturing control and configuration hold great promise
for creating flexible, efficient, and adaptive production systems capable of meeting the demands of
the dynamic global market [21, 22].

2.4 Machine learning in smart manufacturing control

There is an increasing need for an intelligent control for smart manufacturing to a quick adaptation
of manufacturing system to changes/disturbances. Researchers have addressed this need through
the implementation of machine learning techniques along with the system [23]. These machine
learning enabled trained systems are capable of retraining itself with respect to new information
from the shop-floor, purchase demands and market conditions and adapt itself. These adaptive
system requires less physical effort to adjust itself to new requirements.

Machine learning techniques, such as reinforcement learning and neural networks, are increasingly
applied in agent-based manufacturing control to enhance scheduling algorithms’ real-time response,
generalizability, and decision-making abilities. These techniques enable agents to adapt to the
specific aspects of the problem, handle high-dimensional data, and model human behavior. For
instance, AMAM framework [24] uses reinforcement learning to help agents learn and adjust their
behavior in finding solutions to combinatorial optimization problems. In addition, reinforcement
learning optimizes reward functions and guides multiple AI schedulers in real-time scheduling for a
smart factory setting [25].

Multi-agent reinforcement learning is applied to learn the decision-making policy of each agent
and cooperation between job agents in scheduling algorithms for solving job scheduling problems in
a resource preemption environment [26]. Reinforcement learning could also be used to model human
behavior in the creation of Digital Twins with foresight, enabling situational selection of production
control agents. This approach allows for circumstantial control strategies that can outperform
traditional approaches and presents strategies for improved situational agent selection [27].

Innovative neural networks are used for each manufacturing unit to schedule operations with
real-time sensor data in a smart factory setting, allowing effective handling of high-dimensional data
and collaboration between AI schedulers for improved scheduling performance [25]. Moreover, some
proposed methodologies, such as the dynamic scheduling problem in cloud manufacturing, utilize
both neural networks and reinforcement learning to produce novel agent-based solutions, which
are trained using multi-agent reinforcement learning and graph convolution networks for improved

real-time response and generalizability [16]. Thus, machine learning techniques offer promising
L B This project has received funding from the European Union’s 9 /43
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opportunities for agent-based manufacturing control, enabling efficient scheduling and optimization
in manufacturing environments.

2.5 Cloud computing technologies

In the recent research we observe an increasing trend of incorporating cloud technologies in manu-
facturing applications. There have been agent architectures that such manufacturing applications
through agent integration [7]. These kinds of architecture are being integrated with cloud services
for manufacturing control and configuration purpose. The PROSA architecture [7] was extended
with a goal based execution model that employed a BDI semantics and business process modelling to
make it more easily adaptable to cloud infrastructure through partial, functional blocks for resources.
In manufacturing application, task scheduling is a case where the cloud computing is adopted [10]
through agents supported with reinforcement learning. Another case of adoption is seen in health-
care sector [28] where agents coupled with cloud technologies support management model for ECG
monitoring. The cloud here serves as a means of connecting the person agents (a network of sensors)
to the ECG network (where other agents are present).

To solve the scheduling problem in a resource constraint environment, multi-agent reinforcement
learning is used to prioritise and schedule tasks [26]. A cloud based approach be integrated here
to make data driven decision-making where each job can be considered an agent. The information
on each job can be hosted on the cloud and RL can be used to control all agents in a cooperative
manner. Cloud technology in this manner can also support digital twin to develop foresight for job
shop scheduling/ production control [27].

A summary of the literature revised in this section, categorizing agents which are being used,
the concept of intelligent products, machine learning techniques, use of cloud computing, and spec-
ification of data models is presented in Table 2.1.

ACTIONS
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Table 2.1: Summary of references considered

Ref Agents Intelligent Machine learning  Cloud computing  Data models
product
[14], Component, pro- Component NA NA Partial. Capabil-
2017 duction manage- agents ity representation
ment capability
management
[29], Coordinator, YES NA NA NA
2018 workstation,
workstation
executor
[24], Metaheuristic Meta- Reinforcement NA NA
2019 heuristic Learning
agents
[10], Database, sup- Database NA NA Partial. Mathe-
2018 plier, decision  agent, deci- matical model of
maker, order sion maker order allocation
allocator agent
[30], NA NA NA NA NA
2019
[18], Supplier, Produc- NA NA NA NA
2021 tion, Company,
Customer
[31], Task, Printer, NA Artificial Neural Orchestration NA
2021 Master Network
[25], Scheduler NA Reinforcement Monitoring, data NA
2021 Learning analysis and pro-
ces planning
[32], Generic NA Yes Server NA
2021
[19], Feature, Part, NA NA Virtual cells for- NA
2018 Machine mation
[15], Machine, Trans- NA NA Storage, HMI and  Partial. Petri net
2019 port, Process MES behavior model
[33], Self-organizing, Shared re- NA Pool of services, NA
2021 man, ma-  sources storage and com-
chine, mate- munication
rial, mathod,
Environment
[y, Station level:  NA NA Data servers for NA
2017 Station  control, storing models
station monitor- and knowledge
ing, manufac-
turing resource.
Shop level: shop
management,
shop monitoring,
command agent
[4], Initializing, Product NA NA NA
2019 Product, Knowl- agent
edge, Decision
maker, Commu-
nication man-

ager, Resource

ARIE CURI
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Continuation of Table 2.1

Ref Agents Intelligent Machine learning  Cloud computing Data models
product
[11], Resource, order, Order NA Data base and Yes. Relational
2018 supervisor, inter- Agent optimization en- data base com-
face for optimiza- gine prising resource,
tion operation, prod-
uct and order.
[34], Product, re- NA NA - NA
2019 source, remote
monitoring,
introspector
9], Resource, order, AGV agent Yes Digital twin shop- NA
2021 digital twin with prod- floor
uct info
(5], Product, re-  Product NA NA NA
2018 source, schedule, agent
batch,
(71, Part, resource, Part Agent NA NA Partial. Func-
2018 order, staff tion blocks for re-
source control
[16], task NA Reinforcement YES NA
2022 Learning
(28], Fog node, master, Personal Yes YES NA
2021 personal, master Agent
personal
[26], Job NA Reinformcement NA NA
2022 Learning
(271, Decision making NA Reinforcement NA NA
2021 instances Learning
[20], Smart machine NA NA Services of agents  Partial. Smart
2016 are wrapped as machine agent
cloud manufac- model with no
turing services attributes
(6], Suggestion, prod- Product NA For cloud con- Yes. Ontology
2017 ucts, machining, agent trol feedback: for a machining
conveying Schedulling from agent. Also, high
MES, SCADA level model of the
product line.
[22], Robotic  arms, NA NA Interaction  be- NA
2018 sealing machine, tween cloud and
automatic  stor- clients, Cloud
age and retrieval, and shop-floor
conveyor belt, entities Big-data
product
(21], Product, Ma- YES NA Storage and big NA
2017 chine data
(3], Machine, Work- ~Work piece  Artificial Neural NA NA
2019 piece, Trans- agent Network
porter
[35], Logical segment, NA NA NA NA
2018 crossroad, AGvs

agent avatar,
AGYV agent

End of Table
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2.6 Contribution of this work

In line with the literature review presented, the focus of this work considers the next research trends
and challenges.

e Manufacturing process control: A multi-agent based infrastructure will support the distributed
decision making and negotiation of resources in the shop-floor. An intelligent product driven
methodology will be used as baseline to showcase products of batch size one.

e Machine product-driven configuration parameters: Configuration parameters are driven by
product specification and generic capabilities of the machines. This has been generally elu-
sive when considering manufacturing control applications since they are mostly focus on the
orchestration and control process.

e Monitoring and diagnosis of the current status of machines to determine their remaining useful
life. Monitoring variables can be used as a decisive decision-making entity in the control and
coordination process. Machine learning mechanisms can provide further insights of machine
status.

e Detailed data model and specifications for manufacturing products and resources as well as
their relationships.

Overall the previous four items will constitute the target for the development of the current
framework, which will be detailed in next chapter of the deliverable.

ACTIONS
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Chapter 3

Framework

Current chapter presents implementation details of the framework. It covers specific assumptions
for its development, the description of the data model, the negotiation strategy, and methodologies
for machine monitoring, configuration and optimal machine selection.

3.1

Assumptions

The developed framework is designed to optimize the production of single-component products. To
achieve this, certain assumptions have been made about the process:

Product characteristics — All products are assumed to be single-component with a predefined
set of tasks based on their characteristics. This allows for a streamlined and efficient production
process.

Machines and tools — All machines are stationary and have their own set of tools, ensuring
consistent quality and reducing the need for additional equipment. Jigs and fixtures for the
machining process are not within the scope of the work.

Batch size — The assumption of batch size one production means that each product is manu-
factured individually, resulting in a more specialized and customized production process.

Process flow — The process flow is composed of one or more sequential tasks, with each prod-
uct following a predetermined sequence of tasks based on its characteristics. This ensures a
consistent and efficient production process.

Intelligent products — All products are considered intelligent, enabling them to interact with
the production process and provide feedback on their progress, allowing for continuous process
improvement.

Transport units — All transport units (AGVs) have the same capabilities and are stored in
the same place, allowing for efficient material handling and reducing the need for additional
equipment.

Process planning — The framework assumes that the manufacturing process is already planned
and that there is no process planning stage required. This allows for a more streamlined and
efficient production process.

14
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In summary, the developed manufacturing framework optimizes the production of single-component
products by assuming consistent product characteristics, specialized machines and tools, batch size
one production, a predetermined process flow, intelligent products, efficient material handling, and
no process planning stage. These assumptions lead to a more streamlined and efficient production
process, resulting in high-quality single-component products.

3.2 Data model specification

The framework described in this document considers the product-process-resource dynamic, in which
the product, through the tasks required for its manufacturing, demands specific capabilities that the
skills provided by the resources can realize [30].

In this sense, the first step was to devise a data model that contains the minimum information
required to describe the product, tasks, and resource characteristics, support the machine monitor-
ing, and facilitate resource reconfiguration. This data model was defined using generic entities to
simplify its adaptation by the user and its extension to different manufacturing scenarios.

A quick glimpse of the proposed approach is shown in Fig. 3.1, which depicts two models, one
representing the product and its requirements and the other describing the available resources, linked
through an entity, called ‘Template’. All entities considered in this approach are identified by ‘ID’
and ‘name’ to facilitate their traceability. A status attribute was also included for the dominant
entities to report their progress within the manufacturing process. The entities and the links between
them are described in the following.

Product

This entity aims to identify the product and highlight its main manufacturing characteristics in an
elementary way.

Besides the product identification attributes and status, the attribute ‘properties’ stores a list
of product characteristics relevant to its manufacture that will not change throughout the product
realization; for instance, its material, its color, the product variant, the estimated cycle time, and
the size and weight of the final product, among others. On the other hand, the attribute ‘trace’
keeps a set of product properties whose value can change during its realization, such as its current
location, current process, and remaining processing time, to cite a few. Both attributes, ‘properties’
and ‘trace’ are modeled as a list of elements derived from the entity ‘Property’.

Additionally, every product requires a set of activities for its manufacturing, each modeled by
the Task entity.

Task

The entity ‘Task’ describes every activity required for manufacturing the product. Each instance
requires identification attributes and the status, which is independent of the Product status, for
progress tracking. ‘SeqOrder’ attribute specifies the order in which the task must be carried out.
The attribute ‘estimatedProcessingTime’ is assigned at task creation according to statistical or
historical data, providing a forecasted duration for this specific task. The ‘Trace’ attribute is used
in the same fashion as in the ‘Product’ entity.

The task’s characteristics demand the resource that would execute it to meet several capabilities
described using the corresponding entity.

L B This project has received funding from the European Union’s 15 /43
Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie
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Product ey - Resource
~ID: String ' ~ID: String
- name: String .'. - name: String
- status: String .'. - functions: List=Skill=
- properties: List=ProductProperty= - specification: List=ResourceProperty=
- trace: List=DynamicProperty= - sensorData: List<RTData=
- materialCost: double configures - status: String

| 1 - trace: List=DynamicProperiy=

requires
n - utilizationRate: float
Task N
- 1D: String - ‘
- - Stri o . extends extends
name: String ‘ ) Template L ‘
- seqOrder int N - ID: String Machine Tool
- status: String ; - name: String - machineType: String - connector: String
- estimatedProcessingTime: double : - function: Skill - currentParameter. List=Parameter= - toolType: String
- frace: List=DynamicProperty> N - resource: List<Resource= - runningCostPerHour: double - toolCost: double
1 N
| defines - parameters: List<Parameter= I 1
requires . has
10 - - program: String \y 0.1
Capability . Controller
- ID: String : - ID: String
- name: String N - name: String
-value: String .’ - currentProgram: String

- tolerance (optional). double
- unit (optional): String

- contraints (optional): List=Constraint=

Figure 3.1: Proposed model for resource reconfiguration based on product requirements

Capability

This entity captures the specific requirements to execute a task. ‘ID’ and ‘name’ attributes are
used for identification, while the ‘value’; ‘tolerance’, and ‘unit’ can be used to specify quantitative
and qualitative capabilities. Also, the constraints of each capability can be represented by a list of
elements derived from ‘Property’, which will be described later.

Resource

Similar to the products, the resources are represented in a synthetic and generic manner, which
is why the abstract entity ‘Resource’ was defined. This abstract entity can be of different types, a
machine or a tool in this case. Still, it can extend to cover other types of resources, such as measuring
devices, human operators, or other devices. If the resource is a Machine, its type and parameters are
required; if it is a Tool, its type and connector can be specified, all besides the attributes inherited
from the ‘Resource’ entity. A ‘Controler’ entity was created to complement the ‘Machine’; the NC
program currently running on the controller can be specified as an attribute.

Independent of its type, a resource would have identification and status attributes. It will also
possess fixed characteristics for resource selection such as ‘specifications’, a list of properties, and
‘functions’, represented by the entity ‘Skill’. The dynamic characteristics such as ‘sensorData’,
modeled by the ‘RTData’ entity, and ‘trace’, already described for previous entities, allow resource
monitoring and configuration.

|

CTIONS
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Skill

The counterpart of a capability for a resource is the skill. This entity represents each function
provided by the resource to execute a manufacturing activity. Besides identification attributes, a
skill requires a type specification to categorize it easily (See Fig. 3.2 a). These categories are listed in
the ‘SkillType’ enumeration; initially, two categories (transport, transform) are proposed but more
can be added by the user or by applying an existing taxonomy.

il RTData =<=enumeration==
Variable
-1D: String - 1D: String vibration
- name: String -name: Sting f-------s
H temperature
. H
-type: SkillType - type: Variable .
. Use cuttingForce
' - unit: String i
Use 3 toooes =>{ acousticEmission
H conty
==gnumeration== motorSpeed
SkillType Measurement ;
- energyConsumption
Transform + timeStamp: String
current
Transport - value: double
pressure
(a) ()

Figure 3.2: Skill and RTData entities

RTData

The ‘RTData’ entity supports resource monitoring by representing all measured values in a struc-
tured way and establishing their relationship with the corresponding resource (Fig. 3.2 b). Each
instance of this entity refers to the type of the variable being measured, its unit, and can store a set
of ‘Measurements’ with a timestamp and value. Predefined variables are listed in an enumeration
and more can be added, depending on the manufacturing scenario.

Template

To relate a task to a resource, an entity ‘Template’ was defined to support resource reconfiguration by
matching a capability with a suitable resource and setting the corresponding parameters, programs,
and elements to it. For these purposes, a template contains the function being addressed, modeled
by the ‘Skill’ entity; the resource or resources required to realize the capability, with a list of
‘Resource’; the required parameters according to the product characteristics; and the corresponding
NC program, if applicable.

The ‘Template’ was the essential entity in the proposed approach since it provides a space
to portray the different roles of the resources depending on the product characteristics, and how
predefined templates can configure the production system accordingly in an effective manner.

Property

Finally, the abstract entity ‘Property’ was created as the root of different types of elements that
intend to describe a product, task, or resource, depicted in Fig. 3.3.

As basic attributes, the property has an ID, name, and, optionally, a unit. These attributes are
inherited by the types:
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Figure 3.3: Types of properties used in the model

e DynamicProperty. Models the properties that can change during the execution of the process.
It has a timestamp and value associated with it. A list of predefined properties is available at
the ‘en_DynamicProperty’ enumeration.

e ProductProperty. Used for static product properties that are relevant for manufacturing, for in-
stance, size, weight, and material, among others, which are predefined in the ‘en_ProductProperty’

e ResourceProperty. Describes the resource specifications or functional characteristics as a
range with minimum and maximum value. A list of predefined properties is available at
the ‘en_ResourceProperty’ enumeration.

e Constraint. This type of property is used for describing a capability’s constraint. Due to its
diverse nature, it was only modeled as a text description.

e Parameter. Specifies the values required to set on a resource for the execution of a task. These
values are specified by the ‘Template’ to configure the resource.

It is worth mentioning that the proposed models do not intend to replace existing standardized
representation approaches. On the contrary, the models require those specialized representations to
extract the relevant information and apply it within the present framework.

3.3 Multi-agent based negotiation and control logic

Several elements/agents are required to develop the control logic proposed in this framework to
achieve the desired level of autonomy and distributed design. Below is a list of the elements presented

* k%

* *
* *
* *

FACTIONS

* ok
ARIE CURI
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and their description:

3.3.1 Agents description

e Product Agent: Logical abstraction of the physical product. It is responsible for managing the
manufacturing details. It has also knowledge of the required manufacturing operations.

e Machine Monitoring Agent: Logical abstraction of the health status of each of the machines.
It allows the calculation of variables such as Remaining Useful Life.

e Machine Configuration Agent: Logical abstraction of the specific parameters of the configura-
tion of each of the machines. It interacts with a specific machine providing specific parameters
of machine configuration as per the requirements of the product.

e Transport Agent: Logical abstraction of the transport elements of the shop floor. It is mainly
responsible for the transportation of the raw material to each specific machine as per the
requirements of the product.

e Collection transport group: Element that acts as a directory and stores relevant information
of transport agents available.

e Collection machine group: Element that acts as directory and stores relevant information
about the machine agents.

Fig. 3.4 presents a sketch of the multi-agent based framework of this approach.

3.3.2 Logical description

The logic of the process starts when a new intelligent product is launched. Each product has
at least one task. The tasks are sequentially performed. When a task is launched, it is sent to
the collection machine group that will find based on the available data, proper candidate machine
agents to perform a task (by a capability matching process). The optimal machine can be selected
considering availability, functional machine parameters, and their RUL. As mentioned, each machine
agent has a link with a monitoring agent that when launched will return the calculated RUL. After
the machine with optimal functional parameters has been selected, the configuration agent will be
launched. This will provide specific configuration parameters for the machine. It is based on the
specific requirements of the product. As soon as the machine has been configured, an available
transport resource will be selected to take the product from its current place to the next one. Once
in the workspace of the specific machine, the task will be performed. As soon it is finished the
sequential process will be repeated with the next task, until the complete set of tasks have been
performed. Fig. 3.5 presents a sketch of logical sequence describe in this paper.

3.4 Machine monitoring

Sensory data like temperature, pressure, machine speed etc. and run time information from machine
agents is sent to a data storage. This data transmission could be wired or wireless using loT devices
and the data could be stored at a remote location/cloud severs. The machine monitoring agent
utilizes the sensory data stored for data processing to extract valuable insights and information using
various techniques such as data mining, machine learning, and statistical analysis for transforming
raw data into meaningful information that can be used for decision-making.
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Figure 3.4: Agent-based Framework

Sensor data : Sensor data plays a crucial role in monitoring the operational and environmental
conditions of machines or systems. Vibration, temperature, pressure, current, and acoustic sensors
are some of the types of data that can be used to monitor equipment condition. Other data, such as
historical maintenance records and environmental data, can also be used to develop predictive models
for estimating the equipment’s future performance. By integrating this data, machine learning
techniques can be used to provide valuable insights into the condition and performance of machines
and systems, enabling proactive maintenance and minimizing downtime.

Data pre-processing : Data pre-processing prepares data for prediction, as it involves identi-
fying and correcting errors, inconsistencies, or missing data in the collected data set. The goal of
data pre-processing is to ensure that the data used for prediction is accurate, complete, and consis-
tent, which is critical for developing a reliable predictive model. This process involves several steps,
such as detecting and correcting errors, handling missing data appropriately, removing duplicates,
standardizing the data, and validating the pre-processed data set to ensure accuracy and suitability
for prediction. By performing data pre-processing, the data set is improved in terms of quality,
which enhances the accuracy and reliability of the predictions.

Feature engineering : Feature engineering is used in developing accurate and reliable predic-
tive models for machines or systems monitoring. It involves selecting and transforming raw sensor
data into meaningful features that can be used to train a model, such as statistical, frequency, time-
domain, wavelet-based, and domain-specific features. The goal is to extract relevant information
from sensor data that can predict the condition or performance of the equipment. By scaling or
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normalizing the features and removing any highly correlated or redundant features, the model is
based on relevant and meaningful information extracted from the sensor data, which improves the
accuracy and reliability of the predictions.

Data Analysis : In Data analysis, processing and interpreting data collected from sensors and
other sources to estimate or predict the machine monitoring parameters. Data analysis techniques
used in machine monitoring include time-series analysis, statistical analysis, machine learning, fea-
ture selection, and model validation. Effective data analysis is essential for developing a predictive
model based on high-quality data that can handle various operating conditions and failure modes,
ensuring the accuracy and reliability of the predictions. By using data analysis, machine monitoring
can be made more efficient and cost-effective, ultimately increasing the uptime and productivity of
the machine or system.

Data Prediction: After we perform valid and reliable data analysis, we can identify trends and
patterns in the data, forecast future outcomes, optimize processes and systems, and assess potential
risks. To achieve this, we need to use appropriate analytical methods that align with our goals and
the type of data we are analyzing. By doing so, we can gain valuable insights that will help us make
informed decisions and improve our business or organization.

In the context of machine monitoring, data analysis techniques can be used to make predictions
such as machine failure, maintenance scheduling, quality control, energy consumption forecasting
and production optimization. By analyzing machine data from sensors and historical maintenance
records, maintenance teams can take proactive measures to prevent downtime and reduce repair
costs. Additionally, analyzing machine behavior patterns can help optimize production processes,
increase throughput, and ensure product quality. Overall, these predictions can help improve ma-
chine performance, reduce downtime, and optimize production processes.

Knowledge Base: Using a knowledge base for machine monitoring with historical databases,
data processing libraries, machine learning libraries, and cloud computing. Historical databases
provide us with a record of past events and activities, which we can use to make informed deci-
sions about machine maintenance, production optimization, and quality control. Data processing
libraries and machine learning libraries allow us to efficiently analyze large amounts of machine data,
enabling us to make accurate predictions about machine behavior, failure, and maintenance needs.
With cloud computing, we can store and access our knowledge base from anywhere, enabling us to
collaborate and make quick decisions. Overall, our knowledge base built on historical databases,
data processing libraries, machine learning libraries, and cloud computing will help us to improve
machine performance, reduce downtime, and optimize production processes.

3.5 Optimal Machine Selection

The selection of the optimal machine for a specific task is a critical decision in manufacturing and
production environments, as it directly influences overall productivity, efficiency, and product qual-
ity. This decision is contingent upon various criteria, such as cost, reliability, performance, energy
consumption, reachability, payload, availability, utilization rate, and changeover time. In this paper,
we propose a comprehensive optimal machine selection process that integrates machine monitoring
data and multiple criteria, assigning fixed or random weights to each criterion. This methodology
offers a systematic approach for decision-makers to choose the most appropriate machine accord-
ing to their specific needs and priorities, ultimately enhancing productivity, efficiency, and product
quality.
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3.5.1 Criteria for Machine Selection
The following criteria are considered for machine selection:
1. Cost (C): The initial investment, operation, and maintenance costs of the machine.

2. Reliability (R): The probability of the machine performing without failure during its opera-
tional life.

Performance (P): The efficiency, speed, and accuracy of the machine.

Energy Consumption (E): The amount of energy consumed by the machine during operation.
Reachability (RE): The workspace and accessibility of the machine.

Payload (PL): The maximum load the machine can handle.

Availability (A): The percentage of time the machine is available for use.

Utilization Rate (UR): The ratio of the machine’s actual working time to its available time.

© »® N o o s W

Changeover Time (CT): The time required for the machine to switch between tasks or products.

3.5.2 Assigning Weights to Criteria

Weights can be assigned to criteria based on the decision-maker’s preferences. The sum of all weights
should be equal to 1. There are two approaches for assigning weights:

1. Fixed Weights: The decision-maker assigns fixed weights to each criterion based on their
priorities. For example, if cost is the most important factor, it might be assigned a higher
weight than the other criteria.

2. Random Weights: Weights can be randomly generated for each criterion within a specified
range, allowing for a stochastic analysis of the machine selection process. This can be useful in
scenarios where the decision-maker is uncertain about the relative importance of each criterion.

3.5.3 Incorporating Machine Monitoring Data

Machine monitoring data, as elucidated in the previous section, plays a pivotal role in the optimal
machine selection process. By leveraging machine monitoring data, decision-makers can make more
informed choices that consider the real-time condition and performance of machines.

Integrating Machine Monitoring Data

To integrate machine monitoring data into the selection process, we can include additional criteria
or update the existing criteria values based on the monitoring data. For instance, we can consider
the following supplementary criteria:

1. Historical Machine Performance (H): The historical performance of the machine based on
monitoring data, which can provide insights into the machine’s long-term efficiency and pro-
ductivity.
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2. Predicted Machine Failure (F): The predicted probability of machine failure based on machine
monitoring data, which can be used to estimate the machine’s reliability and maintenance
requirements.

These new criteria can be integrated into the weighted sum model by extending the sum in
Equation (3.1) to encompass the additional criteria.

k
j=1

where k represents the total number of criteria considered, including the initial criteria and the
additional criteria based on machine monitoring data, i represents the index of a specific machine
under consideration. For example, if there are multiple machines being evaluated for optimal selec-
tion, ¢ would vary from 1 to the total number of machines being compared. The score, S;, represents
the weighted sum of the criteria values for the i** machine, which is used to rank and compare the
machines based on their suitability according to the defined criteria and their respective weights.

By incorporating machine monitoring data in the form of additional criteria or by updating
existing criteria values, the selection process becomes more robust and reflects the real-time con-
ditions and historical performance of the machines under consideration. This integration enables
decision-makers to make better-informed choices, leading to improved machine performance, reduced
downtime, and optimized production processes.

Updating Criteria Values

Machine monitoring data can also be used to update the existing criteria values based on real-
time information. For example, the reliability criterion (R) can be updated with the latest failure
prediction data, and the maintenance requirements criterion (M) can be updated based on the current
maintenance scheduling and historical maintenance records. By continuously updating the criteria
values with machine monitoring data, the optimal machine selection process remains dynamic and
adapts to the changing conditions of the machines.

3.5.4 Comprehensive Optimal Machine Selection Process

The optimal machine selection process, incorporating machine monitoring data and expanded crite-
ria, can be summarized as follows:

1. Define the criteria for machine selection, including cost, reliability, performance, energy con-
sumption, reachability, payload, availability, utilization rate, and changeover time.

2. Determine the additional criteria based on machine monitoring data, such as historical machine
performance and predicted machine failure.

3. Integrate the machine monitoring data into the selection process by updating the existing
criteria values or including the additional criteria.

4. Assign fixed or random weights to each criterion based on the decision-makers preferences or
by using a stochastic approach.

5. Calculate the score for each machine using the extended weighted sum model (Equation (3.1)),
taking into account the updated criteria values and weights.
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6. Select the machine with the highest score as the optimal choice.

By implementing this comprehensive optimal machine selection process, decision-makers can
leverage machine monitoring data and expanded criteria to make more informed choices, leading
to improved machine performance, reduced downtime, and optimized production processes. This
structured approach ensures that the selection process is logical, adaptable, and in line with academic
standards, providing a solid foundation for future research and practical applications in the field of
machine monitoring and selection.

3.6 Machine configuration specification

Figure 4.2 illustrate the machine configuration component in the proposed architecture. The detail
on the machine configuration change specification can be seen in the figure 3.8. The manufacturing
asset is represented by the asset administration shell (AAS) containing functionality submodels.
The machine configuration change specification component checks/iterates over these submodels for
configuration updates and decision-making.

The machine configuration specification component checks the representative functionality hosted
by AAS in their functionality submodels. The configuration update is carried out through the
following steps:

e The agent interacts with the functionality submodel information by iteration over each sub-
model.

e Each submodel is extracted and loaded by the agent in the memory. Preliminary comparison
and analysis is carried out based on trained models. These trained models complement the
objective and constraint requirements on the manufacturing asset. To continuously improve
the runtime check performance, the result from the comparison and analysis is sent back to
the centralised data store through a connector to ERP/Cloud.

e If after the comparison and analysis, the conditions are satisfied then the next submodel can
be iterated, extracted and loaded in memory to repeat the process. If the condition is not
satisfied, then the respective deviation is noted as an alarm in the Alarm Store. The next
submodel can then be iterated to repeat the process.

e The results are aggregated to represent the total machine configuration specification for all
functionalities in the manufacturing asset. This aggregation takes into account the results
obtained from results and analysis, the alarm log from the Alarm Store and the manufacturing
asset objectives/constraints.

e If the results are considered to be satisfactory, then the runtime monitoring check compo-
nent returns an ”OK” to the agent, else returns a "Not OK”. These signals can easily be
switched /integrated to the PLC I/O signals with the agent interacting with them.

In the developed approach for machine configuration, as mentioned in the steps above, the
need for configuration is identified by first iterating over functionality submodels. The changes,
through the procedure mentioned, are identified. This starts the machine reconfiguration process
planning. The machine configuration specification component executes the configuration change.
Testing /validation and continuous monitoring are carried out by iterating over submodels.

First, we need to generalise the machine configuration specification component. We propose
that the machine configuration specification is a step-wise procedure. Each step encapsulates some
aspects of the machine configuration setup. These steps are;
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e Detecting the need This step involves monitoring the production system to detect changes in
the production environment that may require a reconfiguration of one or more machines. This
could include changes in production demand, machine failures, or changes in the production
schedule.

e Identification of machine reconfiguration Once the need for reconfiguration is detected,
the next step is to identify the specific machines that need to be reconfigured. This could
involve analyzing data from the production system to determine which machines are affected
by the change in the production environment and need to be reconfigured.

e Plan the reconfiguration This step involves planning the details of the reconfiguration,
including the specific changes to be made to the machines, the resources needed to perform the
reconfiguration, and the sequence of steps to be taken. This step may also involve simulating
the proposed reconfiguration to ensure that it will be successful and to identify any potential
issues that need to be addressed.

e Execute the reconfiguration Once the reconfiguration has been planned, the next step is
to execute the changes. This may involve physically reconfiguring the machines, updating
software configurations, or adjusting control parameters.

e Testing and Validation After the reconfiguration has been executed, it’s important to test
and validate that the machines are configured correctly and that the system is operating as
expected. This may involve running tests on the machines and monitoring the system to ensure
that it is functioning correctly.

e Monitoring and Maintenance Finally, it’s important to monitor the system after the re-
configuration and make any necessary adjustments to maintain the desired configuration.
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Chapter 4

Conceptual Use Case

The current chapter presents the applicability of the presented framework with a specific proof of
concept. At his stage of the work the implementation remain conceptual.

4.1 Conceptual Scenario

4.1.1 Product: Manual Expanding Mandrel

A manual expanding mandrel is a tool used in metalworking and woodworking to hold and expand
a workpiece. It typically consists of a cylindrical body with several slits cut into it, and a tapered
wedge or screw that can be driven into the slits, causing the mandrel to expand and grip the inside of
the workpiece. The manual expanding mandrel is then held in a lathe or other machine to facilitate
turning or drilling operations on the workpiece [37]. Manual expanding mandrels are often used
in situations where a workpiece cannot be held securely by conventional methods, such as when
working with irregularly shaped or delicate materials. They can be adjusted by hand to fit a wide
range of workpiece sizes, making them a versatile and useful tool in many different applications. The
manual expanding mandrel is used in the context of the presented framework as it is a representative
example of a single-piece product. Its design allows the definition of specific sequential tasks to be
delegated by available resources in the shop-floor.

Figure 4.1: Manual Expanding Model as a proof of concept product, from [37]

29



Dimand DiManD Deliverable D5.4

4.1.2 Scenario: Flexible manufacturing shop-floor

As part of the conceptual use case, we present a flexible manufacturing shop-floor. The scenario has
been developed considering the various stages of manufacturing of the manual expanding mandrel
(will be detailed in next section). Key aspects of the scenario are the flexibility in terms of rout-

ing (flexible transportation provided by AGVs), different routes for movement, and redundancy of
resources.

Tool 1
Tool 2
Tool 1
Tool 2
Tool 1
Tool 2
Tool 1
Tool 2

Lathe 2

A

<[5

— AGV pool Warehouse Painter 1 Painter 2
=l Bel K

Figure 4.2: Approach for self-configuration within the framework

4.2 Product modeling

As mentioned above, the manual expanding mandrel was selected as a studied product, although a
plain version was used throughout the study for simplification purposes. The manufacturing process
of the studied product was summarized in five tasks, as shown in Fig. 4.6:

e Task 1 (TK1): starting from a cylindrical bar, a turning operation is required. This operation
is executed until obtaining the profile delimited by points P1 to P7-E.

e Task 2 (TK2): with the same setup, a second turning operation is required to shape the profile
delimited by points P8 to P12.

e Task 3 (TK3): once the main shape is achieved, a face grooving operation follows, to obtain
the groove by sweeping the profile defined by points P13 to P16 (detail A).

e Task 4 (TK4): a drilling operation is needed to create six throughout holes, according to the
product’s drawings (in Appendix).
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Machining operations Final product
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Figure 4.3: Product, associated tasks, and profile references for machining operations

TK4

e Task 5 (TK5): a final painting operation is required to deliver the product in its final state.

The described tasks are to be executed sequentially, with the minimum number of setups, with
the resources available on the shop floor.

The model proposed in this work is fed with the product properties, the variables that are going
to be registered in real-time, and the tasks needed for its manufacturing. Each task specifies the
capabilities required and their constraints, besides the variables used for monitoring. The resulting
model is depicted in Fig. 4.4.

It should be noticed that the information required to fill out the model can be extracted from
different sources, such as the geometrical model of the product, or the process plan. The main
goal is to structure the existing information in a clear way so it facilitates its usage by the different
algorithms and processes towards a self-configuration approach.
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Figure 4.4: Studied product according to the proposed model

4.3 Resource modeling

In the same way as the studied product, the resources available on the shop floor were outlined
following the proposed model. Fig. 4.5 shows three examples of the modeled resources, with their
respective skills, specifications, and the data they provide for process monitoring. It is worth men-
tioning that the model was able to accommodate the different types of resources independent of
their complexity.

4.4 Infrastructure negotiation specification

To conceptually showcase the applicability of our proposed framework and proposed product, we
will consider the first stage of its manufacturing process, as this is iterative for the other tasks.

The five agents proposed in the previous chapter of the deliverable are instantiated to showcase
this negotiation.

4.5 Monitoring component specification

Predicting the Remaining Useful Life (RUL) of a machine can be a useful tool for making informed
decisions about whether to repair or replace a machine, and for choosing optimal machines for an
organization. The sensor data required to predict the Remaining Useful Life (RUL) of a turning
machine are,

1. Vibration - dynamic behavior like indicate wear, misalignment, or damage to components
2. Temperature - thermal behavior indicating overheating or component degradation

3. Power consumption - power requirements indicating excessive wear or damage to components
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Figure 4.5: Lathe, cutting tool, and AGV represented according to the proposed model
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Figure 4.6: Process negotiation for proof of concept of the product

4. Acoustic - sound behavior indicating bearing wear or other mechanical problems

*
*
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5. Pressure - fluid behavior, which can indicate clogging or wear in pipes or valves

To predict the Remaining Useful Life (RUL) of a CNC lathe, there are multiple techniques
available, each with its own strengths and weaknesses. The most suitable technique depends on
the specific needs and constraints of the application. For instance, statistical approaches such as
the Proportional Hazards Model are useful when the data is well-behaved, while machine learning
approaches are advantageous when there is a large amount of data or complex relationships between
the sensor data and RUL. Model-based approaches are effective when there is a clear understanding
of system dynamics and parameters. Hybrid approaches can combine multiple techniques to create
more accurate predictions. By using a combination of techniques, maintenance teams can create
more accurate and robust predictions, leading to better maintenance planning and reduced downtime
and maintenance costs. here, a Neural network based approach is used for the RUL prediction due
to the complex relationship between sensor data and RUL. Below, we present a pseudo-code for
using a neural network to predict the Remaining Useful Life (RUL) of a CNC lathe:

Algorithm 1 RUL Prediction of CNC Lathe Machine using Neural Network

1: procedure RUL PREDICTION

2: training_data <+ collect_and_preprocess_data(vibration, temp., power, acoustic, pressure)
3 network_-model < train_neural_network(training_-data)

4 validation_data < collect_and_preprocess_data(sensor_data)

5: accuracy + validate_network(network_model, validation_data)

6 new_data + collect_and_preprocess_data(sensor_data)

7 predicted_RU L + predict_RU L(network_model, newqata)

8 if predicted_.RUL < threshold then

9: plan_maintenance()

10: else

11: continue_operation()

12: end if

13: if RUL_information_requested then
14: send_data(RU L_in formation)

15:

The pseudo-code outlines the basic steps involved in predicting the Remaining Useful Life (RUL)
of a CNC lathe using a neural network with sensor data. The first step involves collecting and
preprocessing historical sensor data to create a training dataset. The neural network is then trained
on the training dataset, and in the third step, it is tested and validated using a separate validation
dataset to evaluate its performance and fine-tune the model if necessary. The fourth step involves
predicting the RUL for new sensor data using the trained neural network.

4.6 Optimal machine selection specification

The optimal machine selection is crucial for the efficient and effective manufacturing of a product.
The proposed framework takes into account the specification of the product and the capabilities of
the available resources on the shop floor to determine the optimal machine selection.

To select the optimal machine for a given task, the proposed framework follows a two-step
process. In the first step, the framework identifies the candidate machines that have the necessary
capabilities to perform the task. In the second step, the framework selects the optimal machine from
the candidate machines based on criteria such as availability, utilization, and efficiency.
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The candidate machines are identified by comparing the capabilities required for the task with
the capabilities of the available machines. The capabilities required for a task are defined in the
product model, while the capabilities of the available machines are defined in the resource model.
The capabilities comparison can be performed using a simple matching algorithm that compares the
required and available capabilities.

Once the candidate machines have been identified, the framework selects the optimal machine
based on criteria such as availability, utilization, and efficiency. The availability criterion takes into
account the current status of the candidate machines, such as whether they are currently in use or
undergoing maintenance. The utilization criterion takes into account the historical utilization of the
candidate machines, such as how frequently they have been used in the past. The efficiency criterion
takes into account the performance of the candidate machines, such as their energy consumption
and production rate.

The optimal machine selection can be performed using a decision-making algorithm that assigns
weights to each of the criteria and calculates a score for each candidate machine. The machine with
the highest score is then selected as the optimal machine for the task.

In conclusion, the proposed framework takes into account the product specification and the capa-
bilities of the available resources on the shop floor to determine the optimal machine selection for a
given task. The two-step process involves identifying the candidate machines that have the necessary
capabilities and selecting the optimal machine based on criteria such as availability, utilization, and
efficiency. By using this approach, the manufacturing process can be optimized, leading to increased
efficiency, reduced downtime, and lower costs.

4.7 Configuration specification

The machine configuration specification defines the requirements for configuring a machine to pro-
duce a specific mechanical part. The specification includes the necessary parameters and settings
for the machine, such as the tooling, cutting speed, and feed rate.

To create a machine configuration specification, the requirements for the mechanical part are
analyzed to determine the optimal configuration for the machine. This analysis takes into account
factors such as the material of the part, the required precision, and the production volume. Once
the optimal configuration is determined, it can be specified in a machine configuration specification
document.

The machine configuration specification can be integrated with an Asset Administration Shell
(AAS) to manage and monitor the machine’s configuration. The AAS can contain multiple submod-
els, each representing a different aspect of the machine’s functionality. For example, one submodel
could represent the machine’s cutting tool, while another submodel could represent the machine’s
material feed system.

When a change in the mechanical part requirements occurs, components in the system can detect
the need for a configuration change. The type of reconfiguration needed can then be identified, and
a plan for the reconfiguration can be created. Finally, the machine configuration can be updated,
allowing the machine to produce the new mechanical part.

Overall, the machine configuration specification and the integrated AAS provide a powerful
framework for managing and optimizing the configuration of a machine to meet the changing de-
mands of modern manufacturing.

In addition to the previous components, the expanded class diagram includes an optimal machine
selection component. This component is responsible for selecting the most suitable machine for the
specific production requirements based on factors such as machine availability, machine capabilities,
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and production schedule.

The optimal machine selection component receives input from the production planning compo-
nent, which provides information about the part to be produced, the required production volume,
and the production schedule. The optimal machine selection component then evaluates the available
machines and selects the most appropriate one based on the input parameters.

This component also takes into account other factors such as the machine’s efficiency, mainte-
nance status, and previous production history. By selecting the optimal machine for production,
this component can help to minimize downtime, reduce production costs, and optimize the overall
production process.

Overall, the expanded class diagram with the optimal machine selection component provides a
comprehensive solution for machine configuration specification that takes into account the specific
requirements of each production order and ensures efficient and effective use of available machines.

Machine AAS ConfigurationAgent

Production i MachineType o
-currentPart b 0 e

-AASSubmodel: AASSubmode(]
~submodeTypes: +detectChange():boolean

FeatureTypel y
“+configure():void e dentiyChangs():void
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Part i featureConfigs:Feature <~}
onfigl]

-id
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MachineConfig
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orcey ; ‘ ConfigurationExecutor
i i -config:Object
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-parts:Part(] ¥ ¥
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name name
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AASSubmodelController ConfigurationPlanner

submodel: AASSubmodel currentConfig:Object
~newConfig: Object

+planChange(0:void +plan():void
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Figure 4.7: The UML Class diagram of Machine configuration specification for the optimum configuration selection
based on proposed approach. The machine selection drives the configuration change process where the machine is
configured to meet requirements of the part.
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Chapter 5

Discussion and Conclusions

This study set out to present a comprehensive framework for self-configuring production. The frame-
work comprised a data model according to the product-process-resource paradigm, a multi-agent
system scenario with machine monitoring and optimal resource allocation, and finally, a machine
configuration strategy.

Higher levels of product customization require decentralized control approaches. Such infras-
tructure has been implemented using multi-agent negotiation in this work. Particularly, we focus on
product-driven manufacturing of batch-size one. The multi-agent infrastructure proposed integrates
a product/resource negotiation to control manufacturing assets and components for monitoring, con-
figuration, and optimization of the whole system. Such infrastructure aims to increase the flexibility
and adaptability of shop-floor operations.

The framework has been conceptually showcased using the manual expanding mandrel as an
example and a shop floor with flexible transportation. Overall, this shows the advantages of the
solution in a real-life scenario and the flexibility it can provide.

Well-defined data models facilitate the exchange of information between the different actors in
a manufacturing scenario. Considering the intelligent product paradigm, the product itself is the
main information carrier, Therefore, all operations required for a product realization need to be
determined by the product and communicated to the resources available on the shop floor. These
tasks need to be allocated based on the capabilities that the manufacturing tasks demand and the
skills the resources could provide. An explicit and clear representation of capabilities and skills
is essential for achieving an accurate matching between task and resource. The matching process
can be streamlined by the use of intermediary entities such as the template proposed in this work,
which can relate the capability and the corresponding skill, as well as the parameters, constraints,
and programs specifically established for the task execution. If the OEM provides the resource’s
skill description with predefined templates applicable to different manufacturing operations, only
the parameter calculation will be needed to complete the data, then the matching process will be
mostly used for optimization purposes.

The machine configuration specification is a process that involves specifying the configuration
requirements for a machine to produce a particular part. It includes selecting the appropriate ma-
chine and its sub-models, detecting the need for a configuration change due to part requirements,
identifying the type of reconfiguration required, planning the reconfiguration, and executing the
machine configuration update. To achieve this, the system makes use of Asset Administration Shell
(AAS), which is a standard for representing the physical and virtual assets in a smart factory. The
AAS consists of multiple sub-models, each representing different functionalities of the machine. The
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sub-models are updated based on the machine configuration requirements. The system also includes
optimal machine selection, which involves selecting the most suitable machine for the given pro-
duction requirements. The optimal machine selection process considers factors such as production
volume, part complexity, and available machines. To facilitate the machine configuration specifica-
tion process, the system uses a user interface that allows the operator to input the part requirements
and receive recommendations for machine selection and configuration. The system also includes a
database that stores information about the available machines and their sub-models. Overall, the
machine configuration specification process is a crucial step in the manufacturing process, as it en-
sures that the right machine is used to produce the required part efficiently and effectively. The
integration of AAS and optimal machine selection further enhances the accuracy and efficiency of
the process.
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Chapter 6
Appendix

Drawing representing the proposed use case.

Figure 6.1: Drawing representing the proposed used case
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