

The Digital Manufacturing and Design Training Network

Grant agreement No $814078-\mathrm{H2020\text{-}MSCA\text{-}ITN}$ European Training Network Grant

Deliverable 3.3

Guide to develop and deploy CPS resources

Lead parties for Deliverable: KTH Deliverable due date: April 2023 Actual submission date: Dissemination level: Public

All rights reserved

This document may not be copied, reproduced or modified in whole or in part for any purpose without written permission from the DiManD Consortium. In addition to such written permission to copy, reproduce or modify this document in whole or part, an acknowledgement of the authors of the document and all applicable portions of the copyright must be clearly referenced.

Contents

1	Introduction	2
2	Self-X services and reference architectures	4
	2.1 Proposed novel architecture	5
	2.2 Integration with other services	7
3	Self-configuration	8
	3.1 Definition of self-configuration	8
	3.2 Requirements	15
4	Self-diagnosis	18
	4.1 Definition of self-diagnosis	18
	4.2 Requirements	23
5	Conclusion	25
6	Next steps and final remarks	26

Summary

This deliverable focuses on the development of a guide aimed at the implementation of services that exploit the CPS architecture and enable the analysis of production performance, monitoring and optimization activities. The included services should be self-contained and combinable in order to maximize their reusability and service aggregation. The guide aims at directing companies (especially SMEs) in the implementation of two services, namely self-configuration and self-diagnosis, instrumental for the deployment of a CPS architecture and ultimately to the industrial adoption of CPS, by enabling fast integration, re-configurability and scalability of automatic production resources.

Team involved in deliverable writing

ESR5: Miriam Ugarte Querejeta, Mondragon Unibertsitatea
ESR8: Fabio Marco Monetti, KTH Royal Institute of Technology
ESR9: Sylvia Nathaly Rea Minango, KTH Royal Institute of Technology
ESR10: Luis Alberto Estrada Jimenez, Universidade NOVA de Lisboa
Supervisor: prof. Antonio Maffei, KTH Royal Institute of Technology

Foreword

DiManD aims to develop a high-quality multidisciplinary, multi-professional and cross-sectorial research and training framework for Europe. The purpose is to improve Europe's industrial competitiveness by designing and implementing an integrated programme in the area of intelligent informatics driven manufacturing, which will form the benchmark for training future Industry 4.0 practitioners. This will be done in compliance with the industrial requirements such revolutionary production systems will pose, and in specific this deliverable will represent one further step forward, by attempting to crystallize a finite set of system requirements, derived from real-world conditions, to be leveraged for the correct implementation of self-configuration and self-diagnostic services.

1 Introduction

In this deliverable, we will investigate the development of services that leverage the Cyber-Physical Systems (CPS) architecture. The primary focus will be on two key services: self-configuration and self-diagnosis. These services play a crucial role in enabling the analysis of production performance [1], monitoring [2], predicting the outcome [3] and optimizing activities within CPS environments [4], thus enabling the future of intelligent, reconfigurable manufacturing systems [5, 6, 7]. By creating services that can work independently and be easily combined with other services, we can reuse and aggregate their capabilities to create bigger services [8, 9].

This deliverable is part of Work Package 3 (WP3), dedicated to the development and evaluation of a CPS architecture. It builds upon the outcomes of previous tasks, which involved a comprehensive analysis of the state-of-the-art in CPS and its adoption in industry, and the identification of requirements for a CPS architecture bridging the gap between existing industrial standards and ICT infrastructures, enabling fast integration and configuration of CPS resources [10, 11, 12].

This deliverable serves as a guide that will aid industrial practitioners in the development and deployment of CPS resources using the previously developed CPS architecture. This architecture will be extended and further developed in the present document. The guide will provide instructions for the implementation of self-configuration and self-diagnosis capabilities in CPS environments. By following this guide, practitioners will be able to deploy services within a CPS for analyzing production performance, monitoring activities, and optimizing industrial processes.

Cyber-Physical Systems have emerged as a critical technology in modern industrial settings, as these systems integrate physical components with advanced computing, and communication technologies, enabling companies to scale up their levels of automation, efficiency, and flexibility [13, 14, 15]. CPS have huge potential to greatly influence current and future industry practice, however their successful integration in the current manufacturing environment still requires proper guidance [16].

The complexity of CPS architectures and the variety of technologies involved pose significant challenges to industrial practitioners. To address these challenges, there is a need for a comprehensive guide that provides step-by-step instructions and insights into the development and deployment of CPS resources. This deliverable is aimed at facilitating the adoption of CPS by enabling fast integration, re-configurability, and scalability of automatic production resources.

Therefore, the main objectives of this deliverable are as follows.

- Develop self-contained and combinable services that work in the CPS architecture described in D3.2.
- Describe the upgrade of the CPS architecture and provide practical guidelines for the development and deployment of CPS resources.
- Present the implementation requirements of self-configuration and self-diagnosis capabilities to allow the analysis of production performance, monitoring, and optimization activities.
- Maximize the reusability and service aggregation of the developed CPS services.

This guide will therefore cover topics such as the selection of appropriate technologies, the design of the CPS architecture to support them, and the development of self-contained and combinable services that enable the analysis of production performance, monitoring and optimization activities. As part of the transformation inspired by the fourth industrial revolution, it will also consider factors such as interoperability, scalability, integration and digitization; since it will also consider the rise of what has been called Industry 5.0, it will explore the role of humans within the described CPS system, emphasizing their significance as central to the activities involved.

As mentioned, this deliverable will focus on two key services within CPS: self-configuration and self-diagnosis. Self-configuration aims to enable automatic rearrangement of hardware and software configurations in response to demanding manufacturing requirements. Self-diagnosis focuses on the automatic detection, understanding of root causes of failures, and resolution of faults. With the increasing importance of CPS in industrial settings, the development of a comprehensive guide for their implementation is essential, and therefore with this document we hope to give practitioners an easy-to-follow, schematized and structured set of instructions and recommendations for properly developing CPS resources.

2 Self-X services and reference architectures

The implementation of self-configuration and self-diagnostic services within this WP necessitates a comprehensive description of the underlying architecture, including inputs, outputs, required machinery and equipment, and information flow. This architectural framework can be applied to any other service that provides self-X behavior within a CPS. As previously documented [10], services like the ones featured in this deliverable facilitate enhanced interconnection and interoperability among machines within an autonomous system. Moreover, their functionalities can be easily utilized both within and outside a company, enabling CPS to provide highly scalable web services.

In [11], self-configuration and self-diagnosis were described as two general requirements of autonomous cyber-physical production systems, and were referred to as Autonomy Requirement (AR) number 5 and Autonomy Requirement number 6:

- AR5 self-configuration, refers to the capacity of autonomously configuring and adjusting components and systems, including their auto re-adjustment, if necessary. In manufacturing systems, it can apply to modules that can start working without requiring explicit programming;
- **AR6** self-diagnosis, involves the capacity of a system to understand and detect failures, examine the status of machines, and identify the root cause of the failure.

For a detailed explanation and an extensive overview of the two services within the architectural framework, please refer to the previous deliverable [11].

Deliverable D3.1 [10] provided a shortened list of requirements for the self-X services under consideration, based on a combination of existing literature and firsthand experience of the researchers and practitioners involved in the deliverable writing. The following deliverable [12] presented a formalization of the self-X behaviors using the MAPE-K framework and a mapping with RAMI 4.0, outlining the technologies and standards needed to deploy smart manufacturing applications. However, it also highlighted that a comprehensive, generic implementation guideline is lacking. Therefore, the purpose of this guide is to bridge this gap by presenting manufacturers with a set of best practices for achieving improved levels of autonomy. It would also be beneficial to utilize this guide for enhancing the autonomy of a manufacturing system and subsequently evaluating it in combination with a recently developed maturity model for the autonomy of manufacturing systems, which represents an additional outcome of this project [17]. With this guide, we aim to provide specific implementation instructions that will enable interested practitioners to leverage the benefits of CPS implementation.

In this manuscript, we revisit and expand upon the previously identified requirements, thoroughly examining and extending the list to ensure its comprehensiveness. Our goal is to provide companies with a user-friendly and easily understandable compilation of requirements that can serve as a practical guide for implementing self-configuration and self-diagnosis in autonomous systems. This guide has been designed and written to facilitate future effortless extension and inclusion of other self-X and smart services.

The two complete lists of requirements are presented in the following Sections, and extensively explained in the text flow. Additionally, the reader will find them presented in Table 1 and 2. These tables can be read like this: from left to right the reader will find that each row contains a

generic high-level requirements, which is sub-divided into more specific sub-requirements, whose recording is essential to extrapolate the important information needed for defining what resources are necessary to the implementation. Each resource is also represented in an example, which makes the interpretation of such information accessible and straightforward. Finally, the last four columns specify the *inputs* necessary to any specific resource to properly function, as well as the *input sources*, followed by the outgoing outputs and the output sources providing them. With such a structure, we believe that the information can be accessed and interpreted easily for SMEs and big companies alike. In a few cases it is not applicable or not possible to to uniquely tell the input and output sources for a specific sub-requirements, therefore some columns may present null values corresponding to such rows. However, before listing all the requirements, it appears necessary to frame the novel architecture that we will be using in the deliverable. Therefore, first the architecture will be described in the following Section 2.1, and then the two main Tables containing the requirements will be presented and described in detail in Sections 3, and 4.

2.1 Proposed novel architecture

Before delving into the description of the specific requirements, examples, inputs and outputs of the two proposed services, we present a high-level architectural representation of how one example-service like this would fare within an autonomous system. It is composed of several layers, including an asset layer consisting of a sensors layer and machine layer that encompass all necessary resources for data collection. Additionally, there is an edge layer located on-site, as well as an external fog and cloud layer.

This architecture draws inspiration on the previous work performed during the DiManD project, through the previously mentioned deliverables, as well as previous research efforts presented in such work as Qi and Tao (2019) [18], Caggiano (2018) [19], and others [20, 21].

Qi and Tao (2019) present a reference architecture for smart manufacturing systems that incorporates edge computing, fog computing, and cloud computing. In our proposal, we adopt their definitions to incorporate this hierarchical computing composition, and include edge, fog, and cloud components. In summary, smart manufacturing systems consists of multiple layers of devices and computational assets. The foundation lies in the smart equipment portfolio, where data are sourced and edge computing takes place. This is followed by a transmission layer for data transfer and where fog computing occurs. The final layer is the cloud, where big data is stored and analyzed. Through the integration of edge computing and fog computing, only essential information is sent to the cloud, reducing the data flow and minimizing service downtime while maintaining system robustness. Edge computing, fog computing, and cloud computing collaborate to meet the requirements of smart manufacturing applications more effectively.

Caggiano (2018) presents how cloud-based manufacturing processes are monitored for smart services like the ones we investigate. Here, the cloud manufacturing architecture is layered in a hierarchy composed of: (i) physical resources; (ii) local servers; and (iii) cloud servers; to allow for a shared computational effort between resources. In this case, the cloud manufacturing server utilizes sensor data collected at the factory level to provide timely online diagnosis of tool conditions. Such diagnosis is achieved through knowledge-based algorithms and other pattern recognition paradigms. Assisted by the cloud-based services, the local server initiates appropriate

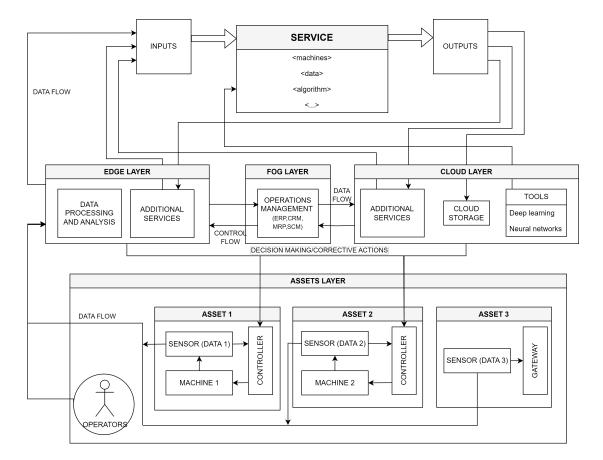


Figure 1: Schematized representation of the novel architecture for self-X services.

restoring actions, such as tool replacement, process interruption, or parameter adjustments. The server then sends the necessary command to the machine tool control for implementation.

The extended cloud-based smart services architecture proposed by this deliverable is presented in Figure 1. The computing and service assets in the cloud are interconnected with the physical equipment in the asset layer, such as machines and sensors, forming an advanced CPS. The discussed layered structure of the architecture offers shared computational effort between resources, managed remotely: online communication reduces the physical distance between locations and allows to share results and information at the highest possible speed. The physical resources and the local layer are both available at the factory shop floor, while the fog servers and the cloud storage and services are possibly located elsewhere.

The asset layer comprises machines, transportation units, and other equipment, all equipped with sensors to collect relevant process and machine status data. The local server at the factory shop floor performs initial data preprocessing and easy computing tasks. Working in parallel with the fog servers, it filters out unimportant or redundant data and sends the essential data

packages to the cloud servers. In some cases, it might also happen to have a database (with a smaller capacity compared to cloud servers) in the edge, for raw-data collection and storage, such that then data preprocessing can be performed within the edge layer only on sets of data taken in defined sampling periods.

In the cloud servers, which possess high computational resources, the service tasks are then performed. The manufacturing information is stored in a cloud database for monitoring and historical analysis, as well as serving as input for other cloud-based services. The critical data is analyzed, patterns are detected, and important outputs, such as fault root cause recognition, are generated.

Once the computing task is completed, the diagnostic output is sent back to the local server, which utilizes the results for decision-making and suggests corrective actions. The operator can visualize the suggested actions on the terminal and receive warnings if human intervention is required. After the intervention, the operator can confirm the status of the maintenance activity and the operative system, effectively closing the loop with the system.

2.2 Integration with other services

The services in our architecture have the ability to integrate with other services to improve their analysis capabilities and provide more extended insights and competences. Taking the selfdiagnostic service as an example, its outputs can be published to the cloud layer for storage, analysis, and integration with additional services. These outputs can then be re-utilized as inputs to many downstream applications and services, such as maintenance planning service, or performance analytics service, available to enterprises on the cloud, for a marginal cost. To further specify the benefits, please refer to the following examples, only partial indication of a more extended ecosystem of available services.

- 1. *Predictive maintenance*: self-diagnostic services can incorporate predictions from a predictive maintenance service, which uses machine learning algorithms to predict when a machine or component is likely to need care. The combined service can therefore provide proactive maintenance recommendations. Moreover, it can generate optimized maintenance schedules and work orders based on the diagnostic results.
- 2. *Performance analytics*: self-diagnostic services cooperate with a performance analytics service to provide insights on the OEE of machines and to identify trends and monitoring the long-term performance of the system to identify potential process improvements.
- 3. *Energy management*: self-diagnostic services can integrate with an energy management service to analyze energy consumption patterns of robots and other equipment alike. Then, it can identify excessive energy usage and highlight inefficiencies.
- 4. *Storage management*: self-diagnostic services can gather data from a storage management service to check the availability of needed spare parts and components. This combination allows to provide recommendations about the availability and replenishment of materials.

3 Self-configuration

3.1 Definition of self-configuration

The self-configuration service is responsible for automatically configuring and adjusting the settings of machines and equipment to optimize their performance and adapt to changing operational conditions. The system is capable of autonomously starting the operating mode [22], acquiring the related configuration parameters, and initializing itself to provide the desired services [23], or dynamically readjust its settings to react to unexpected, changing conditions [24]. In order to do so, it requires as inputs data from a sensor framework, as well as historical configuration records, operational machine information, and contextual information, thus acquiring the capability to determine the optimal configuration settings. Within the service is utilized a series algorithms and rules to analyze the inputs and generate configuration recommendations or automatically apply the new specified settings. Outputs from the self-configuration service are sent to the machines and the equipment in the shop-floor for implementation and can also be shared with other services for further analysis or integration.

	Output source	Post- processors, translators, converters	Post- processors, translators, converters	Message servers, com- munication software	Post- processors, translators, converters	Expert systems, AI
	Outputs	Structured, organized information in standard models	Data in standard format	Standardized data packages	Fully compatible data	Context information
	Input source	sensors, resource data	Sensors, systems, resource data	Sensors, controllers, end-point- equipment	Legacy systems	Sensors
nfiguration.	Inputs	Raw data	Raw data in multiple formats	Data flows, control signals	Historical data in legacy formats	Raw data
Table 1: Requirements for self-configuration.	Stakeholders	Data engineers, IT Engineers, Software Engineer		Equipment manufactur- ers, IT engineers, software engineers	System integrators, Equipment manufactur- ers, IT engineers, software engineers	IT Engineer, Software Engineer, Manufactur- ing Engineer
Table 1: Require	Example	Existing data models, existing ontologies	AutomationML, Unified modeling language	MQTT, OPC-UA	Plug-and- play devices, USB sensors/USB PLCs, APIs	temperature, force, pressure measure- ments
	Resources	Standard data models, ontologies	Standard data formats	Standard communica- tion protocols, standard communica- tion	Backward compatibil- ity, standard physical interfaces, retrofitting	Physical, logical, and/ or virtual sensors, expert systems, data models
	Sub- requirement	Semantic interoper- ability	Syntactic interoper- ability	Transport interoper- ability	Technical interoper- ability	Context information
	Requirements	Interoperability				Context awareness

88

Т

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-9-

PDM systems	CAM/CAPP systems, MRP systems	ERP systems, MRP systems	Management software
Product information	Process plan, NC programs	Routing plans, layout configura- tions	Financial reports, operation reports, business projections
CAD/CAE systems	PDM systems, CAD/CAE systems	CAD/CAM/ CAPP systems	ERP systems, MRP systems
CAD models, drawings, BOM	Requirements, product information	Process information, resources' technical specifications	Production data
Manufacturing engineer, software engineer, designer, supplier, purchase	Process planner, production personnel, manufactur- ing engineer	Equipment manufactur- ers, manufactur- ing engineer, system integrator	Management, production planner
CAD models, engineering drawings, material material seftca- tions, CAD software (e.g., CATIA, NX, Solidworks)	NC data, process simulations, CAM software (e.g., MasteCAM, NX), robot programming	sottware Machines' specifica- tions, controllers specifica- tions, plant layout	Netsuite
Product models, product recipes, product doc- umentation, BOM, raw material information, PMD systems, CAD/CAM/ CAE	software Process plan, process sheets, MBOM, CAB/CAPP CAE/CAPP software	Resources' skills/ capabilities, production plan, expert knowledge, facility information, MRP	systems Runtime conditions, KPIs, business information
Product information	Process information	Resource information	Manufacturing information
Knowledge			

0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-10-

- 1

Security systems	Security systems	Security policies	Cloud-based security systems
malOnly authorized access granted	Only authorized access granted	Sensitive data protected	Only authorized access granted
Internal/externalOnly users, author suppliers acces grant	Internal/ external users, suppliers	Internal/ external users, suppliers	Internal/ external users, suppliers
Access requests, data requests	Access requests, data requests	Business data	Production data
IT security team, system administra- tors, infrastruc- ture manager	IT security team, system administra- tors	IT security team, system administra- tors, network administra-	ut tr security team, system administra- tors, network administra- tor, infrastruc- ture manager
Authentication protocols, encryption algorithms, log monitoring systems, antivitus, intrusion prevention systems	Intrusion detection mechanisms, regular security checks	Internal policies, good practices	Cryptographic algorithms
Access control (au- thentication, authoriza- auditing), data encryption, digital signatures, event logs intrusion detection system, host firewalls, end-point security	systems systems policies, identity management systems, au- thentication systems, privacy- protection	meetamisms General Data Protection Regulation (GDPR)- compliant	Presentity Websecurity service, storage security, identification and access management service
Infrastructure Security	Identification and access management	Data protection and security	Cloud security as a service
Security			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-11-

IT infras- tructure	IT infras- tructure, ISP, external infrastruc- ture providers	PDM, ERP, MES, CRM, SCM systems	Cloud services, local servers
Reliable communica- tion flow	Encrypted and secure information flow	production information ce-	Data backups
End-point devices, com- munication devices, software, security systems, data- devices	Own IT in- frastructure/ external services	CAD/CAM/ CAE/CAPP systems,resource- generated data	Internal servers
Data flows, control signals	Data flows, control signals	production data	Production data and information
Network ad- ministrators, System integrators, IT personnel	Network ad- ministrators, System integrators, IT personnel	Network ad- System integrators, IT personnel	Network ad- ministrators, System integrators, IT personnel
Network sniffers, antivirus),	Network monitoring software	Automation software	Google cloud, AWS, Azure
Networking devices, software for network connectivity, endpoint equipment, reliable com- munication network (wired/wireless), consistent access to data (inter- net/LAN)	Network monitoring, routing and access policies	Product data management (PDM), manufactur- ing execution systems (MES), (MES), (MES), (MES), (MES), (MES), management (CRM), supply chain management (SCM), enterprise resource planning (ERP) systems	Storage (cloud/local), database structure
Reliable IT infrastruc- ture	Secure and scalable WAN/LAN	Updated operative information	Storage
Connectivity		Data integra- tion and management	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-12-

- .

All systems	Tool wear, energy consumption, health machine status	Sensors information input, PLC outputs	machine status, energy, energy, energy, allocation parameter configura- tion, optimal machine configuration
Fault-free processes	Monitoring information	Monitoring, actuation signals	Configuration information
Internal/ external clients	IoT Monitoring services	Latency Services, Security threat services	Machine status service, Energy consumption service, Health status service, Task allocation service, Parameter configuration optimal machine configuration service
Production orders	Sensors: vibration, temperature, speed, productivity.	Latency, security threats	Num and type of machines, Num and type of products, Productivity, Health Status of machines, Energy consumption of machines, Layout, Recipe/Set of tasks of tasks of tasks of product, Products due date
Automation Engineer	IT Engineer, Control engineer, Mechanical engineer	IT Engineer, Software Engineer	IT Engineer, ML Engineer, Data a analytics Engineer
Error recovery, dynamic scheduling	Temp, vibration sensors, GPS	Apache kafka, Apache flink, google cloud data flow, microsoft azure	Cumulocity IoT Platform, Microsoft Azure IoT Suite, Google Cloud IoT Suite, Google Cloud IoT Plex Smart Manufactur- ing Platform, Siemens Siemens Opcenter Execution, Proficy Simulation Digital Man- ufacturing Simulation Software, Autodesk Digital Twin
Infrastructure redundancy, flexible layout, responsive production planning	IoT communication (real time), Positioning 1 devices	Firewall, real time processing frameworks	loT platforms, Manufactur- ing execution system, Digital twin technologies
Fault- tolerance	Runtime IoT cor condition nication monitoring, time), loca- Position tion/destination devices monitoring	Low latency, fault tolerance, Scalability, Security	Adaptation identifica- tion, Performance evaluation, Feasibility analaysis
Robustness	Monitoring	Real time capability	Analysis

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-13-

		ı ———			. ——
Scheduling, load balancing	1	Layout re- configuration	1	Manufacturing modules, machines	1
ERP		Intelligent infrastruc- ture	1	Configuration parameters of machines	
Production engineer	1	Available modules and skills	1	Production engineer	
Components position, products due date, machine machine positioning, available skills	1	Infrastructure	intelligent orchestrator	Previous configuration stored	
ML Engineer, Data analytics, production engineer	IT Engineer, Software Engineer, Control Engineer	Automation engineer	IT Engineer, Software Engineer, Automation Engineer	Software engineer, automation engineer	IT engineer, software engineer
Microsoft Azure Machine Learning Studio, RapidMiner	AWS, Azure, Google cloud, SAP Digital Man- ufacturing Cloud, IEC 61499, ROS	Multi-agent based, service-based technology	Jade framework, IEC 61499, ROS	Storage servers	Google cloud, edge devices, Rasp pi, Arduino, smart controllers
Advance analytics and ML, Supply chain management system	AWS, Azure, Google cloud, SAP Digital Man- ufacturing Cloud, IEC 61499, ROS	Modular hardware, modular software	MAS frameworks, Industrial and robotics platforms	Servers, cloud storage	Edge computing, fog computing, cloud computing
Component localization, Components grouping, Task prioriti- Task prioriti- Balance load distribution, Workflow of operations planning, Generation of skills	Cloud-based, Service-based	Intelligent infrastruc- ture	Agent-based elements, Service oriented, Fine granularity	Continous data storage	Decentralized computation
Planning	Scalability	Plug and produce	Modularity	Self- learning	Decentralization

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-14-

3.2 Requirements

- **R1.** Interoperability: refers to the "ability of two or more systems or applications to exchange information and to mutually use the information that has been exchanged", as provided by the ISO 22123-1:2023 standard [25]. In this sense, information at all levels must be checked for consistency throughout the system. Consequently, the implementation of global standards is recommended to expedite information exchange and the potential scalability of the system through the integration of new components. Data flows in all forms need to comply with this requirement for which the infrastructure, software, and IT engineers will be responsible for defining the protocols, data models, file formats, and software packages reigning all the production system.
- **R2.** Context awareness: to adopt a new configuration, the system must be aware of its environment and use this information to provide the best solution according to current circumstances [26]. A wide variety of sensors are available in the market to collect the required information, but it will be the organization, the one deciding which information is important and how it will be extracted from the raw data. Measured variables will depend upon the system's tasks and goals.
- **R3.** Knowledge: the amount of data and information generated by the whole system must be processed, classified, and stored adequately, considering the different levels of the organization to which they are relevant. It is essential to identify which data is used to generate the desired inputs, the frequency in which it is collected, how and where it will be stored, and the guidelines for accessing these data. The role of the software platforms is critical for this requirement since they need to be fully compatible and generate a seamless integration of systems.
- **R4.** Security: since the system relies on data circulating throughout the infrastructure, a well-defined security strategy is vital to protect the system and its users. Security must be assessed frequently, considering control access, authentication, data encryption, and GDPR policies. This assessment should be done at the internal organization level and at its cloud service providers [27]. Furthermore, security should not depend only on the IT department, but it needs to be part of the organizational culture making everybody aware of the existing risk and good practices to follow. Further guidelines can be found at ISO/IEC 29180:2012 standard, Information technology Telecommunications and information exchange between systems Security framework for ubiquitous sensor networks; ISO/IEC 27033:2015, Information technology Security techniques Network security; and ISO/IEC 27000 standard family, Information security management.
- **R5.** Connectivity: access to data is crucial for a self-configuring system to respond according to the circumstances. For this, a reliable network is necessary, tolerant to faults, with the right cost-benefit in terms of the required infrastructure and system requirements.
- **R6.** Data integration and management: all data generated in and by the system needs to be available for the relevant stakeholders at the different levels of the organization. Then, relevant and updated information needs to be spread through the data management platforms

at all levels, which is highly related to the interoperability and connectivity requirements mentioned previously. The frequency in which these systems should be updated needs to be assessed internally, considering the amount of data collected and the infrastructure capabilities. Additionally, how much of this information is stored for the long term, with which frequency and the backup method need to be considered to optimize costs without jeopardizing the system in case of faults.

- **R7.** Robustness: the production system and its internal subsystems need to be able to handle disturbances and be fault-tolerant to maintain the productivity level at the desired range [28]. Several strategies can be considered, including dynamic scheduling and self-healing methods, most of which will require a flexible and redundant infrastructure at all levels.
- **R8.** Monitoring: the elements of a system or the system itself are able to keep track of its own performance, logging process data to further analyze it [23]. Data capture devices like sensors are necessary to keep track of this information.
- **R9.** Real time capability: the elements of a system can respond fast enough to an event without having a noticeable delay that compromises the normal functioning of the operations.
- **R10.** Analysis: the term is taken from the context of autonomous computing. In manufacturing automation, it refers to the capacity of analyzing and interpreting manufacturing data from various sources to gain insights, identify trends, and malfunctions, and with that consider proper actions.
- **R11. Planning**: unlike analysis, planning refers to the capacity of the manufacturing system to generate a sequence of actions that lead to a specific goal, e.g. reconfiguration strategies: change of position of stations, change of machine parameters, etc.
- **R12.** Scalability: refers to the capacity of a system to adapt its infrastructure when adding or removing elements e.g., stations, modules, etc. efficiently enough to accommodate available resources and optimize its usability.
- **R13.** Plug and produce elements: elements that can work once they are physically plugged. An intelligent infrastructure is able to recognize and orchestrate specific functionalities to the various manufacturing tasks.
- **R14.** Modularity: self-contained manufacturing modules include necessary hardware and software to work stand-alone or to be integrated into an intelligent infrastructure.
- **R15.** Self-learning: refers to the capacity of the system to extract knowledge e.g., from the operator decision-making and reuse it in an equal/similar context. This learning activity can increase process adaptability.
- **R16.** Decentralization: decentralization in manufacturing is accomplished when individual elements within the system, such as workstations, machine tools, AGVs, and products, have the capability to make independent decisions in real-time, all while working towards

a shared organizational goal. In this setup, there is no central control unit governing these elements. The systems operate autonomously, even in the face of external disruptions, specific exceptions, or conflicting objectives, and are specifically designed to achieve overall objectives by utilizing localized operational information.

4 Self-diagnosis

4.1 Definition of self-diagnosis

The self-diagnostic service is designed to monitor and analyze the operational state of machines in real-time, enabling proactive maintenance and minimizing downtime. It utilizes advanced algorithms and machine learning techniques to detect anomalies, predict faults, find the root-cause of failures, and provide recommendations for maintenance actions. Self-diagnostic is responsible for analyzing the data collected through sensors from the machines and equipment to determine their health and performance. The service will take inputs from sensors built for monitoring variables as temperature, pressure, vibration, and any other relevant feature. The system then analyzes this data to find and predict any anomalies or issues and send an output to specify the root cause of the problem and possible solutions.

Output source	Sensors	Sensors, Database	Sensors	Edge/cloud	Database	Analysis service
Outputs	Raw data	Raw and historical data	Information	Database	Secure/safe data	Pre- processed data
Input source	Expert knowledge	Production	Standard refs.	Cloud, Production	Security manager	Monitoring service
Inputs	Variables of interest (for faults)	Production data	Std and protocols	Cloud data, Production data	Security protocols	Raw data
Stakeholders	Manufacturing engineers, Equipment technicians	Data analysts, Data scientists	Automation engineers, Network ad- ministrators	IT infras- tructure team, Database ad- ministrators	Information security officers, Privacy officers	Data engineers, Data analysts
Example	Sensors: position, torque, vibration	Cloud-based storage: Amazon S3, Google Cloud Storage, Microsoft	Profibus, Ethercat, CAN	Ethernet, Wi-Fi, 5G; OPC UA, Automa- tionML, MT	Access levels, shareability, anonymity, firewall	Data filtering: Moving average filter, outlier removal; Normaliza- tion: Min-Max scaling, Z-score nor-
Resources	Sensors and machines	Edge/cloud storage	 Standards and protocols 	Database, storage capacity, edge/cloud storage	Security	Data filtering, nor- malization
Sub- requirement	Sensor selection and placement	Sensor data and historical data	Communication Standards protocols and protocols	Data collection and storage	Security and anonymity of data	Data pre- processing
Requirements	Connectivity			Data managing		Monitoring and analysis

ः 🛃

DiManD Deliverable D3.3

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-19-

() 🛃

DiManD Deliverable D3.3

Data analysis team	Analysis service	Planning service	Safety system	Maintenance team	Planning service	Planning service
Failure data (analysis results)	Failure report and fault root cause	Prediction of fail- ure/predictive maintenance	Alarms and notifications	Fault assessment report	Policy adjustment proposal	Contingency plan
Analysis service	Analysis service	Planning service	Analysis service	Analysis service	Analysis service, maintenance, operators	Analysis service
Pre- processed data	Failure data, KPIs for optimization	Failure data	Failure	Failure reports	Feedback and analysis results	Diagnostic results
I	Maintenance engineers, Reliability engineers	Operations managers, data analysts	Operations supervisors, Maintenance technicians	Maintenance team	Policy managers, Process team	Maintenance team
Machine learning algorithms: Decision trees, Support Vector Machines	Fault tree analysis, Root Cause Analysis	Performance monitoring software: Grafana, Prometheus	Failure visualization, alarm signals; Two-level authentica- tion. security	Locating fault through RCA report, analysis of state of	system Adjusting based on performance metrics, user feedback, and industry	Target software, actuators, operator intervention
Fault identi- fication, classification algorithms	Algorithm to locate root cause of failure	Forecasting algorithms	Safety signals, secure access for operators	Manuals and maintenance knowledge	Knowledge, user feedback, fault analysis results	Contingency plan based on diagnostic results, policies, previous knowledge
Data analysis	Fault detection	Performance analysis	Alerting and accessibility	Fault assessment	Policies adjustments	Adaptation plan/Recovery plan
			Planning			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

-20-

ः 👪

DiManD Deliverable D3.3

Maintenance team	Maintenance team :tuator,	Operators	Data scientists	Policy ad- ministrators
Fault correction possible	Executed Main action on as- team set/software/actuator, maintenance report	Failure report	Report	Policies
Planning service	Analysis service, maintenance	Analysis service	Production	Expert knowledge
Recovery plan	Contingency plan results, asset information	Failure data	Production data	Rules and conditions for failures and faults
Maintenance team	Maintenance team	Operations supervisors, data analysis team	Database ad- ministrators	Compliance officers, Policy ad- ministrators
Safety measures needed to isolate root cause and actuate fault	Replacing faulty component, restart machine, check safety, updates on software, activitions on	Business dashboards and HMI for failure visualization: Tableau, Power BI	Historical data saved and retrieved for knowledge acquisition and updating: Database records,	Rules saved, evaluated, and updated based on events and conditions: Rule-based engine, knowledge base
Standards, policies and safety compliant action plan	Spare parts, manuals, work permits, poftware patches, actuators	Edge/cloud storage, operators	Edge/cloud storage	Knowledge management system
Plan execution	Fault correction	Reporting	Historical data	Policies
Executing			Knowledge	

Operators	Knowledge management system
List of failure causes	Knowledge
Operators	Operators
Failure reports	Info on production
Operations technicians, Maintenance operators	Operations supervisors, Data analysts
Events and conditions bringing faults are saved: Log files, cloud storage	Runtime conditions: operating parameters; KPIs: OEE; data models: product recipe specifications
Edge/cloud storage	Runtime conditions, KPIs, data models
Symptoms and conditions	Information

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant No. 814078

DiManD Deliverable D3.3

4.2 Requirements

- **R1.** Connectivity: enabling connectivity among various equipment is essential. Therefore, all manufacturing resources should be accessible and capable of communicating with other resources in the network. This entails establishing connections between data source elements (e.g., sensors), manufacturing assets (e.g., machines), services (e.g., self-X), and all network layers including edge, fog, and cloud. To achieve seamless interoperability and facilitate data exchange among these resources, it is crucial to employ open standards and protocols for connectivity in IIoT and IoT networks. At the field level, commonly utilized transport protocols include Profibus, Ethercat, and CAN. In addition, open standards such as OPC UA, AutomationML, and MT connect play a pivotal role in enabling data exchange and fostering interoperability within the IIoT and IoT. IoT applications are time-sensitive and require streaming instead of batch-processing in real-time [29], which rely heavily on wireless networking, such as WiFi, and 5G.
- **R2.** Data managing: the manufacturing infrastructure should have the capability to collect data from the edge devices, transfer data between different layers, and store it in the storage systems. Each layer is in charge of a specific data management task:
 - 1. The edge layer should be responsible for data acquisition from the edge devices, performing data pre-processing, and transferring the pre-processed data to the fog layer.
 - 2. The fog layer serves as the bridge between the edge and the cloud layers and is responsible for data transfer.
 - 3. The cloud layer should have data storage capacity and computing power.

Therefore, it is necessary to establish the required IT infrastructure. This includes defining the data acquisition frequency (i.e., sampling period), determining the required data storage capacity, defining information structure and data models (e.g., AADL, UML, MARTE), and implementing the necessary IT resources for data transfer (e.g., routers, switches, servers, gateways). Additionally, data management should give particular attention to data security and privacy by establishing the required data security protocols, data protection tools, and policies. It is important to note that while the cloud layer offers significant computational power and storage capacity, it introduces some latency to the data. Therefore, if real-time data analysis is required, the edge layer should also have some additional data storage and computing capability.

R3. Monitoring and analysis: continuous monitoring and analysis of data is essential to identify faults, breakdowns, malfunctions, and anomalies, as well as diagnose the underlying causes of failures. This encompasses a range of events, from simple changes in resource states to more complex events like value fluctuations or other complex patterns [30]. Thereby, observed data must be continuously processed in the edge layer. To begin with, raw data should be pre-processed by applying data filtering, cleaning by eliminating outliers with density clustering, normalization and scaling, and feature extraction techniques. Machine learning techniques like decision trees can be employed for feature extraction, although deep learning methods have gained attention due to their ability to automatically extract features from raw data and accurately establish nonlinear mappings of different

health conditions [31]. The extracted feature data should be sent to the cloud to store it as historical data to further train machine learning models, i.e. artificial neural networks, support vector machines, and random forests. Fault diagnosis is usually a classification problem, thus, pre-processed data can then be used to detect failures using fault identification or classification algorithms, such as machine learning or deep learning data-driven approaches. Fault diagnoses can also be used to determine the root cause of failure, or predict the Remaining Useful Life (RUL) of the asset with forecasting algorithms. Establishing the required KPIs is crucial in this context. The outcome of this phase should be a change request to further explore in R4 for contingency plans.

- **R4. Planning**: self-diagnosis requires a mechanism for making reports and contingency plans. Fault assessment reports should be derived from expert knowledge and root cause analysis reports retrieved from R3. In the event of failures, contingency plans should be designed to create actions with the goal of addressing the issues, making recovery plans or providing necessary actions to the operators to mitigate the problem. The developed plan can range from a basic action like shutting down the system to more intricate tasks like altering the structure or the process model. Lastly, new knowledge obtained from the failure reports should be used to provide feedback to the internal knowledge storage systems (i.e., R6), and make any necessary adjustments to KPIs and policies.
- **R5.** Executing: contingency plans developed in R4 should be implemented either in the target software, which might imply there termination of a task, require some correction in the actuators, or provide a clear instruction plan to the operators for execution. In addition, all failure reports need to be promptly alerted and visualised through business dashboards or HMIs to the relevant stakeholders i.e., operation supervisors and maintenance technicians. It is important to note that this information may contain confidential data, hence it is crucial to ensure secure access to the information by establishing proper security measures, such as two-level authentication.
- **R6.** Knowledge: all data and acquired knowledge should be stored in edge/cloud storage databases, as they form the core body of the self-diagnosis service. This encompasses a wide range of information, including historical data, policies and rules, fault symptoms and conditions, runtime conditions and KPIs, among others. These databases are continuously updated through the feedback obtained from the self-diagnosis agent.

5 Conclusion

In this deliverable, we presented a guide for the implementation of self-configuration and selfdiagnosis services in a cloud-based system environment. Such guide aims to be as complete and comprehensive as possible. The study and collection of requirements was conducted with such a thorough and methodical approach, that we believe to have formulated the most extended and esplicative list of requirements to date. The main goal of this work was to provide practitioners with an implementation guide to enable them to design, prepare, and implement these services in real-world applications. With an in-depth evaluation of previous research, experiential first-hand knowledge, and practical implementation, we have identified the key requirements, analyzed existing architectures, and proposed a novel one that addresses the barriers and problems associated with the deployment of self-configuration and self-diagnosis services.

The main portion of this work focused on the extraction and extrapolation of requirements from the initial list that was suggested in previous deliverables [12]. We carefully reviewed the proposed requirements, extended and focused the list to contain the essential components necessary to fulfill them. We created a framework and a guideline for practitioners to follow by mapping these requirements to the corresponding functionalities of self-configuration and self-diagnosis, as well as identifying common input-outputs relationships between the parts, and highlighting the main stakeholders responsible for each resource involved. This process ensured that the guide captures the core aspects for successful implementation, thus enabling interested companies to create the services they need.

In order to correctly deploy the services and utilize the identified requirements, we conducted an in-depth analysis of existing architectures and frameworks related to self-configuration and self-diagnosis, to identify common patterns and approaches that are employed for similar works in the field, and consequently combined such insights to propose a novel architecture that addresses the specific challenges of self-configuration and self-diagnosis services in a cloud-based system environment.

The proposed architecture takes into account the needs of the system for autonomous decisionmaking capabilities, emphasizing its scalability, and the adaptability to varying system conditions. The architecture consists of several key components, including an asset layer, an edge and a fog layer functioning as intermediates before the high-level cloud layer, which is the main party involved in the services' activities. All the components are linked to enable self-configuration and self-diagnosis cohesively, ensuring efficient system operation and reducing manual intervention.

Furthermore, the guide not only provides a comprehensive overview of the proposed architecture but also offers guidelines and highlights for the implementation process, by suggesting the main resources to be introduced. From the requirements to system design, to deployment and maintenance, practitioners are able to leverage the guide to analyze and reduce the difficulty involved in realizing self-configuration and self-diagnosis services. By following the recommended architecture and considering the provided insights, practitioners can improve the efficiency and robustness of their systems.

It is worth noting that the guide can be extended to encompass other services that have been presented in previous deliverables, such as self-learning and self-organization. Thanks to future work focusing on the integration of additional services, the guide will offer a comprehensive resource for implementing end-to-end autonomous functionalities in distributed systems.

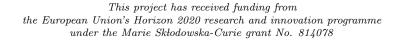
6 Next steps and final remarks

The guide presented in this deliverable is an important milestone towards achieving autonomous and adaptive cloud-based systems. It lays the foundation for practitioners to implement selfconfiguration and self-diagnosis services, and serves as a road map to address critical needs for system autonomy, offering a list of common requirements and needed resources. By incorporating such insights, practitioners can improve the situation related to heavy effort required for system configuration and diagnosis, increasing system availability and improving the overall system performance.

One of the key advantages of the proposed guide is its ability to extrapolate suggestions for implementation from the list of specifications, which is as essential and complete as possible, and allows practitioners to have a clear understanding of the underlying necessities of an autonomous system, while at the same time allowing them to adapt the guide to their specific system requirements.

The next steps include providing a practical case-study implementation of the services described in this deliverable, by applying the proposed architecture and guidelines to a real-world scenario. This will serve as an evaluation of the effectiveness and practicality of the suggested approach and of as many of the list's requirements as possible. This will also help showing the benefits of self-configuration and self-diagnosis services in improving system performance and adaptability. Future works also include extending the guide to encompass other autonomous services, such as self-learning and self-organization, and integrating them into a comprehensive resource for implementing end-to-end autonomous functionalities in cloud-based systems.

References


- Zhengyi Song and Young Moon. "Performance analysis of CyberManufacturing Systems". In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233.5 (Apr. 2019), pp. 1362–1376. DOI: 10.1177/0954405417706996.
- [2] Oliver Niggemann et al. "Data-Driven Monitoring of Cyber-Physical Systems Leveraging on Big Data and the Internet-of-Things for Diagnosis and Control". In: *Proceedings of the* 26th International Workshop on Principles of Diagnosis. 26th International Workshop on Principles of Diagnosis. DX. Paris, FR, 2015.
- Jay Lee, Chao Jin, and Behrad Bagheri. "Cyber physical systems for predictive production systems". In: *Production Engineering* 11.2 (Apr. 2017), pp. 155–165. DOI: 10.1007/s11740-017-0729-4.
- Jay Lee, Behrad Bagheri, and Hung-An Kao. "A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems". In: *Manufacturing Letters* 3 (Jan. 2015), pp. 18-23. DOI: 10.1016/j.mfglet.2014.12.001.
- [5] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren. "Reconfigurable manufacturing systems: Key to future manufacturing". In: *Journal of Intelligent Manufacturing* 11.4 (2000), pp. 403– 419. DOI: 10.1023/A:1008930403506.
- [6] Hung-An Kao et al. "A Cyber Physical Interface for Automation Systems—Methodology and Examples". In: *Machines* 3.2 (May 14, 2015), pp. 93–106. DOI: 10.3390/machines3020093.
- [7] Daqiang Guo et al. "A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System". In: *International Journal of Production Research* 58.15 (Aug. 2, 2020), pp. 4631–4646. DOI: 10.1080/00207543. 2020.1762944.
- [8] A.W. Colombo et al. "Service-oriented architectures for collaborative automation". In: 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005. Raleigh, NC, USA: IEEE, 2005, 6 pp. DOI: 10.1109/IECON.2005.1569325.
- [9] Sergii Iarovyi et al. "From artificial cognitive systems and open architectures to cognitive manufacturing systems". In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). Cambridge, United Kingdom: IEEE, July 2015, pp. 1225–1232. DOI: 10.1109/ INDIN.2015.7281910.
- [10] José Antonio Mulet Alberola et al. DiManD Work Package 3.1a Overall requirements and preliminary selection. European Project Deliverable 3.1a. Stockholm, Sweden: KTH Royal Institute of Technology, Mar. 2021, p. 27.
- [11] José Antonio Mulet Alberola et al. DiManD Work Package 3.1b Full analysis and final set of requirements. European Project Deliverable 3.1b. Stockholm, Sweden: KTH Royal Institute of Technology, Sept. 2021, p. 51.

ः 📲

- [12] Luis Alberto Estrada-Jimenez et al. DiManD Work Package 3.2 Cyber Physical Systems Architecture. European Project Deliverable 3.2. Stockholm, Sweden: KTH Royal Institute of Technology, June 2022, p. 36.
- [13] Armando W. Colombo et al. "Industrial Cyberphysical Systems: A Backbone of the Fourth Industrial Revolution". In: *IEEE Industrial Electronics Magazine* 11.1 (Mar. 2017), pp. 6– 16. DOI: 10.1109/MIE.2017.2648857.
- [14] Borja Ramis Ferrer et al. "Towards the Adoption of Cyber-Physical Systems of Systems Paradigm in Smart Manufacturing Environments". In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN). 2018 IEEE 16th International Conference on Industrial Informatics (INDIN). Porto: IEEE, July 2018, pp. 792–799. DOI: 10.1109/ INDIN.2018.8472061.
- [15] Carolina Villarreal Lozano and Kavin Kathiresh Vijayan. "Literature review on Cyber Physical Systems Design". In: *Procedia Manufacturing*. 10th Conference on Learning Factories. Vol. 45. CLF. Graz, AT: Elsevier, 2020, pp. 295–300. DOI: 10.1016/j.promfg. 2020.04.020.
- [16] Rima Al-Ali et al. "A guide to design uncertainty-aware self-adaptive components in Cyber-Physical Systems". In: *Future Generation Computer Systems* 128 (Mar. 2022), pp. 466– 489. DOI: 10.1016/j.future.2021.10.027.
- [17] Fan Mo et al. "A maturity model for the autonomy of manufacturing systems". In: The International Journal of Advanced Manufacturing Technology (Feb. 27, 2023). DOI: 10. 1007/s00170-023-10910-7.
- [18] Qinglin Qi and Fei Tao. "A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing". In: *IEEE Access* 7 (2019), pp. 86769–86777. DOI: 10.1109/ACCESS.2019.2923610.
- [19] Alessandra Caggiano. "Cloud-based manufacturing process monitoring for smart diagnosis services". In: International Journal of Computer Integrated Manufacturing 31.7 (July 3, 2018), pp. 612–623. DOI: 10.1080/0951192X.2018.1425552.
- [20] Dazhong Wu et al. "Fog-Enabled Architecture for Data-Driven Cyber-Manufacturing Systems". In: Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing. ASME 2016 11th International Manufacturing Science and Engineering Conference. Blacksburg, Virginia, USA: American Society of Mechanical Engineers, June 27, 2016, V002T04A032. DOI: 10.1115/MSEC2016-8559.
- [21] Karolj Skala et al. "Scalable Distributed Computing Hierarchy: Cloud, Fog and Dew Computing". In: Open Journal of Cloud Computing (OJCC) 2 (2015), pp. 16–24. DOI: 10.19210/1002.2.1.16.
- [22] R. Frei and Giovanna Di Marzo Serugendo. "Concepts in complexity engineering". In: International Journal of Bio-Inspired Computation 3.2 (2011), p. 123. DOI: 10.1504/ IJBIC.2011.039911.
- [23] Regina Frei et al. "Self-healing and self-repairing technologies". In: The International Journal of Advanced Manufacturing Technology 69.5 (Nov. 2013), pp. 1033–1061. DOI: 10.1007/s00170-013-5070-2.

- [24] Harald Psaier and Schahram Dustdar. "A survey on self-healing systems: approaches and systems". In: Computing 91.1 (Jan. 2011), pp. 43–73. DOI: 10.1007/s00607-010-0107-y.
- [25] Information technology Cloud computing Part 1: Vocabulary. Technical ISO/IEC 22123-1:2023. Geneva, CH: International Organization for Standardization, Feb. 2023, p. 18.
- [26] Charith Perera et al. "Context Aware Computing for The Internet of Things: A Survey". In: *IEEE Communications Surveys & Tutorials* 16.1 (2014). Conference Name: IEEE Communications Surveys & Tutorials, pp. 414–454. DOI: 10.1109/SURV.2013.042313.00197.
- [27] Yazhe Wang, Shunan Ma, and Lei Ren. "A Security Framework for Cloud Manufacturing". In: ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers Digital Collection, Oct. 3, 2014. DOI: 10.1115/MSEC2014-4082.
- [28] N. Stricker and G. Lanza. "The Concept of Robustness in Production Systems and its Correlation to Disturbances". In: *Proceedia CIRP* 19 (2014), pp. 87–92. DOI: 10.1016/j. procir.2014.04.078.
- [29] Montdher Alabadi, Adib Habbal, and Xian Wei. "Industrial Internet of Things: Requirements, Architecture, Challenges, and Future Research Directions". In: *IEEE Access* 10 (2022), pp. 66374–66400. DOI: 10.1109/ACCESS.2022.3185049.
- [30] Lukas Malburg, Maximilian Hoffmann, and Ralph Bergmann. "Applying MAPE-K control loops for adaptive workflow management in smart factories". In: *Journal of Intelligent Information Systems* (Jan. 25, 2023). DOI: 10.1007/s10844-022-00766-w.
- [31] Min Xia et al. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning". In: *Reliability Engineering & System Safety* 215 (Nov. 2021), p. 107938.
 DOI: 10.1016/j.ress.2021.107938.

