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Summary

This deliverable focuses on the development of a guide aimed at the implementation of services
that exploit the CPS architecture and enable the analysis of production performance, monitor-
ing and optimization activities. The included services should be self-contained and combinable
in order to maximize their reusability and service aggregation. The guide aims at directing
companies (especially SMEs) in the implementation of two services, namely self-configuration
and self-diagnosis, instrumental for the deployment of a CPS architecture and ultimately to
the industrial adoption of CPS, by enabling fast integration, re-configurability and scalability of
automatic production resources.
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ESR5: Miriam Ugarte Querejeta, Mondragon Unibertsitatea
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Foreword

DiManD aims to develop a high-quality multidisciplinary, multi-professional and cross-sectorial
research and training framework for Europe. The purpose is to improve Europe’s industrial
competitiveness by designing and implementing an integrated programme in the area of intelligent
informatics driven manufacturing, which will form the benchmark for training future Industry 4.0
practitioners. This will be done in compliance with the industrial requirements such revolutionary
production systems will pose, and in specific this deliverable will represent one further step
forward, by attempting to crystallize a finite set of system requirements, derived from real-world
conditions, to be leveraged for the correct implementation of self-configuration and self-diagnostic
services.

1 Introduction

In this deliverable, we will investigate the development of services that leverage the Cyber-
Physical Systems (CPS) architecture. The primary focus will be on two key services: self-
configuration and self-diagnosis. These services play a crucial role in enabling the analysis of
production performance [1], monitoring [2], predicting the outcome [3] and optimizing activities
within CPS environments [4], thus enabling the future of intelligent, reconfigurable manufacturing
systems [5, 6, 7]. By creating services that can work independently and be easily combined with
other services, we can reuse and aggregate their capabilities to create bigger services [8, 9].

This deliverable is part of Work Package 3 (WP3), dedicated to the development and eval-
uation of a CPS architecture. It builds upon the outcomes of previous tasks, which involved a
comprehensive analysis of the state-of-the-art in CPS and its adoption in industry, and the identi-
fication of requirements for a CPS architecture bridging the gap between existing industrial stan-
dards and ICT infrastructures, enabling fast integration and configuration of CPS resources [10,
11, 12].

This deliverable serves as a guide that will aid industrial practitioners in the development
and deployment of CPS resources using the previously developed CPS architecture. This archi-
tecture will be extended and further developed in the present document. The guide will provide
instructions for the implementation of self-configuration and self-diagnosis capabilities in CPS
environments. By following this guide, practitioners will be able to deploy services within a CPS
for analyzing production performance, monitoring activities, and optimizing industrial processes.

Cyber-Physical Systems have emerged as a critical technology in modern industrial settings,
as these systems integrate physical components with advanced computing, and communication
technologies, enabling companies to scale up their levels of automation, efficiency, and flexi-
bility [13, 14, 15]. CPS have huge potential to greatly influence current and future industry
practice, however their successful integration in the current manufacturing environment still
requires proper guidance [16].

The complexity of CPS architectures and the variety of technologies involved pose significant
challenges to industrial practitioners. To address these challenges, there is a need for a com-
prehensive guide that provides step-by-step instructions and insights into the development and
deployment of CPS resources. This deliverable is aimed at facilitating the adoption of CPS by
enabling fast integration, re-configurability, and scalability of automatic production resources.

u This project has recetved funding from -2-
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Therefore, the main objectives of this deliverable are as follows.

e Develop self-contained and combinable services that work in the CPS architecture described
in D3.2.

e Describe the upgrade of the CPS architecture and provide practical guidelines for the
development and deployment of CPS resources.

e Present the implementation requirements of self-configuration and self-diagnosis capabili-
ties to allow the analysis of production performance, monitoring, and optimization activi-
ties.

e Maximize the reusability and service aggregation of the developed CPS services.

This guide will therefore cover topics such as the selection of appropriate technologies, the
design of the CPS architecture to support them, and the development of self-contained and com-
binable services that enable the analysis of production performance, monitoring and optimization
activities. As part of the transformation inspired by the fourth industrial revolution, it will also
consider factors such as interoperability, scalability, integration and digitization; since it will also
consider the rise of what has been called Industry 5.0, it will explore the role of humans within
the described CPS system, emphasizing their significance as central to the activities involved.

As mentioned, this deliverable will focus on two key services within CPS: self-configuration
and self-diagnosis. Self-configuration aims to enable automatic rearrangement of hardware and
software configurations in response to demanding manufacturing requirements. Self-diagnosis
focuses on the automatic detection, understanding of root causes of failures, and resolution of
faults. With the increasing importance of CPS in industrial settings, the development of a
comprehensive guide for their implementation is essential, and therefore with this document we
hope to give practitioners an easy-to-follow, schematized and structured set of instructions and
recommendations for properly developing CPS resources.

u This project has recetved funding from -3-
the European Union’s Horizon 2020 research and innovation programme
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2 Self-X services and reference architectures

The implementation of self-configuration and self-diagnostic services within this WP necessitates
a comprehensive description of the underlying architecture, including inputs, outputs, required
machinery and equipment, and information flow. This architectural framework can be applied
to any other service that provides self-X behavior within a CPS. As previously documented [10],
services like the ones featured in this deliverable facilitate enhanced interconnection and inter-
operability among machines within an autonomous system. Moreover, their functionalities can
be easily utilized both within and outside a company, enabling CPS to provide highly scalable
web services.

In [11], self-configuration and self-diagnosis were described as two general requirements of
autonomous cyber-physical production systems, and were referred to as Autonomy Requirement
(AR) number 5 and Autonomy Requirement number 6:

AR5 self-configuration, refers to the capacity of autonomously configuring and adjusting com-
ponents and systems, including their auto re-adjustment, if necessary. In manufacturing
systems, it can apply to modules that can start working without requiring explicit pro-
gramming;

ARG self-diagnosis, involves the capacity of a system to understand and detect failures, examine
the status of machines, and identify the root cause of the failure.

For a detailed explanation and an extensive overview of the two services within the architectural
framework, please refer to the previous deliverable [11].

Deliverable D3.1 [10] provided a shortened list of requirements for the self-X services under
consideration, based on a combination of existing literature and firsthand experience of the re-
searchers and practitioners involved in the deliverable writing. The following deliverable [12]
presented a formalization of the self-X behaviors using the MAPE-K framework and a mapping
with RAMI 4.0, outlining the technologies and standards needed to deploy smart manufactur-
ing applications. However, it also highlighted that a comprehensive, generic implementation
guideline is lacking. Therefore, the purpose of this guide is to bridge this gap by presenting man-
ufacturers with a set of best practices for achieving improved levels of autonomy. It would also be
beneficial to utilize this guide for enhancing the autonomy of a manufacturing system and subse-
quently evaluating it in combination with a recently developed maturity model for the autonomy
of manufacturing systems, which represents an additional outcome of this project [17]. With
this guide, we aim to provide specific implementation instructions that will enable interested
practitioners to leverage the benefits of CPS implementation.

In this manuscript, we revisit and expand upon the previously identified requirements, thor-
oughly examining and extending the list to ensure its comprehensiveness. Our goal is to provide
companies with a user-friendly and easily understandable compilation of requirements that can
serve as a practical guide for implementing self-configuration and self-diagnosis in autonomous
systems. This guide has been designed and written to facilitate future effortless extension and
inclusion of other self-X and smart services.

The two complete lists of requirements are presented in the following Sections, and extensively
explained in the text flow. Additionally, the reader will find them presented in Table 1 and 2.
These tables can be read like this: from left to right the reader will find that each row contains a

u This project has received funding from -4-
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generic high-level requirements, which is sub-divided into more specific sub-requirements, whose
recording is essential to extrapolate the important information needed for defining what resources
are necessary to the implementation. Each resource is also represented in an example, which
makes the interpretation of such information accessible and straightforward. Finally, the last
four columns specify the inputs necessary to any specific resource to properly function, as well
as the input sources, followed by the outgoing outputs and the output sources providing them.
With such a structure, we believe that the information can be accessed and interpreted easily for
SMEs and big companies alike. In a few cases it is not applicable or not possible to to uniquely
tell the input and output sources for a specific sub-requirements, therefore some columns may
present null values corresponding to such rows. However, before listing all the requirements,
it appears necessary to frame the novel architecture that we will be using in the deliverable.
Therefore, first the architecture will be described in the following Section 2.1, and then the two
main Tables containing the requirements will be presented and described in detail in Sections 3,
and 4.

2.1 Proposed novel architecture

Before delving into the description of the specific requirements, examples, inputs and outputs
of the two proposed services, we present a high-level architectural representation of how one
example-service like this would fare within an autonomous system. It is composed of several
layers, including an asset layer consisting of a sensors layer and machine layer that encompass
all necessary resources for data collection. Additionally, there is an edge layer located on-site, as
well as an external fog and cloud layer.

This architecture draws inspiration on the previous work performed during the DiManD
project, through the previously mentioned deliverables, as well as previous research efforts pre-
sented in such work as Qi and Tao (2019) [18], Caggiano (2018) [19], and others [20, 21].

Qi and Tao (2019) present a reference architecture for smart manufacturing systems that
incorporates edge computing, fog computing, and cloud computing. In our proposal, we adopt
their definitions to incorporate this hierarchical computing composition, and include edge, fog,
and cloud components. In summary, smart manufacturing systems consists of multiple layers
of devices and computational assets. The foundation lies in the smart equipment portfolio,
where data are sourced and edge computing takes place. This is followed by a transmission
layer for data transfer and where fog computing occurs. The final layer is the cloud, where big
data is stored and analyzed. Through the integration of edge computing and fog computing, only
essential information is sent to the cloud, reducing the data flow and minimizing service downtime
while maintaining system robustness. Edge computing, fog computing, and cloud computing
collaborate to meet the requirements of smart manufacturing applications more effectively.

Caggiano (2018) presents how cloud-based manufacturing processes are monitored for smart
services like the ones we investigate. Here, the cloud manufacturing architecture is layered in
a hierarchy composed of: (i) physical resources; (ii) local servers; and (iii) cloud servers; to
allow for a shared computational effort between resources. In this case, the cloud manufacturing
server utilizes sensor data collected at the factory level to provide timely online diagnosis of tool
conditions. Such diagnosis is achieved through knowledge-based algorithms and other pattern
recognition paradigms. Assisted by the cloud-based services, the local server initiates appropriate

u This project has recetved funding from -5-
the European Union’s Horizon 2020 research and innovation programme
under the Marie Sktodowska-Curie grant No. 814078
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Figure 1: Schematized representation of the novel architecture for self-X services.

restoring actions, such as tool replacement, process interruption, or parameter adjustments. The
server then sends the necessary command to the machine tool control for implementation.

The extended cloud-based smart services architecture proposed by this deliverable is pre-
sented in Figure 1. The computing and service assets in the cloud are interconnected with the
physical equipment in the asset layer, such as machines and sensors, forming an advanced CPS.
The discussed layered structure of the architecture offers shared computational effort between
resources, managed remotely: online communication reduces the physical distance between lo-
cations and allows to share results and information at the highest possible speed. The physical
resources and the local layer are both available at the factory shop floor, while the fog servers
and the cloud storage and services are possibly located elsewhere.

The asset layer comprises machines, transportation units, and other equipment, all equipped
with sensors to collect relevant process and machine status data. The local server at the factory
shop floor performs initial data preprocessing and easy computing tasks. Working in parallel
with the fog servers, it filters out unimportant or redundant data and sends the essential data

This project has recetved funding from -6-
the European Union’s Horizon 2020 research and innovation programme
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packages to the cloud servers. In some cases, it might also happen to have a database (with
a smaller capacity compared to cloud servers) in the edge, for raw-data collection and storage,
such that then data preprocessing can be performed within the edge layer only on sets of data
taken in defined sampling periods.

In the cloud servers, which possess high computational resources, the service tasks are then
performed. The manufacturing information is stored in a cloud database for monitoring and
historical analysis, as well as serving as input for other cloud-based services. The critical data
is analyzed, patterns are detected, and important outputs, such as fault root cause recognition,
are generated.

Once the computing task is completed, the diagnostic output is sent back to the local server,
which utilizes the results for decision-making and suggests corrective actions. The operator can
visualize the suggested actions on the terminal and receive warnings if human intervention is
required. After the intervention, the operator can confirm the status of the maintenance activity
and the operative system, effectively closing the loop with the system.

2.2 Integration with other services

The services in our architecture have the ability to integrate with other services to improve
their analysis capabilities and provide more extended insights and competences. Taking the self-
diagnostic service as an example, its outputs can be published to the cloud layer for storage,
analysis, and integration with additional services. These outputs can then be re-utilized as
inputs to many downstream applications and services, such as maintenance planning service,
or performance analytics service, available to enterprises on the cloud, for a marginal cost. To
further specify the benefits, please refer to the following examples, only partial indication of a
more extended ecosystem of available services.

1. Predictive maintenance: self-diagnostic services can incorporate predictions from a pre-
dictive maintenance service, which uses machine learning algorithms to predict when a
machine or component is likely to need care. The combined service can therefore provide
proactive maintenance recommendations. Moreover, it can generate optimized maintenance
schedules and work orders based on the diagnostic results.

2. Performance analytics: self-diagnostic services cooperate with a performance analytics
service to provide insights on the OEE of machines and to identify trends and monitoring
the long-term performance of the system to identify potential process improvements.

3. Energy management: self-diagnostic services can integrate with an energy management
service to analyze energy consumption patterns of robots and other equipment alike. Then,
it can identify excessive energy usage and highlight inefficiencies.

4. Storage management: self-diagnostic services can gather data from a storage management
service to check the availability of needed spare parts and components. This combination
allows to provide recommendations about the availability and replenishment of materials.

u This project has recetved funding from -7-
the European Union’s Horizon 2020 research and innovation programme
under the Marie Sktodowska-Curie grant No. 814078
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3 Self-configuration

3.1 Definition of self-configuration

The self-configuration service is responsible for automatically configuring and adjusting the set-
tings of machines and equipment to optimize their performance and adapt to changing operational
conditions. The system is capable of autonomously starting the operating mode [22], acquiring
the related configuration parameters, and initializing itself to provide the desired services [23], or
dynamically readjust its settings to react to unexpected, changing conditions [24]. In order to do
S0, it requires as inputs data from a sensor framework, as well as historical configuration records,
operational machine information, and contextual information, thus acquiring the capability to
determine the optimal configuration settings. Within the service is utilized a series algorithms
and rules to analyze the inputs and generate configuration recommendations or automatically
apply the new specified settings. Outputs from the self-configuration service are sent to the
machines and the equipment in the shop-floor for implementation and can also be shared with
other services for further analysis or integration.

u This project has recetved funding from -8-
the European Union’s Horizon 2020 research and innovation programme
under the Marie Sktodowska-Curie grant No. 814078
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3.2 Requirements

R1. Interoperability: refers to the “ability of two or more systems or applications to exchange
information and to mutually use the information that has been exchanged”, as provided
by the ISO 22123-1:2023 standard [25]. In this sense, information at all levels must be
checked for consistency throughout the system. Consequently, the implementation of global
standards is recommended to expedite information exchange and the potential scalability
of the system through the integration of new components. Data flows in all forms need to
comply with this requirement for which the infrastructure, software, and I'T engineers will
be responsible for defining the protocols, data models, file formats, and software packages
reigning all the production system.

R2. Context awareness: to adopt a new configuration, the system must be aware of its
environment and use this information to provide the best solution according to current
circumstances [26]. A wide variety of sensors are available in the market to collect the
required information, but it will be the organization, the one deciding which information is
important and how it will be extracted from the raw data. Measured variables will depend
upon the system’s tasks and goals.

R3. Knowledge: the amount of data and information generated by the whole system must be
processed, classified, and stored adequately, considering the different levels of the organi-
zation to which they are relevant. It is essential to identify which data is used to generate
the desired inputs, the frequency in which it is collected, how and where it will be stored,
and the guidelines for accessing these data. The role of the software platforms is critical for
this requirement since they need to be fully compatible and generate a seamless integration
of systems.

RA4. Security: since the system relies on data circulating throughout the infrastructure, a
well-defined security strategy is vital to protect the system and its users. Security must
be assessed frequently, considering control access, authentication, data encryption, and
GDPR policies. This assessment should be done at the internal organization level and
at its cloud service providers [27]. Furthermore, security should not depend only on the
IT department, but it needs to be part of the organizational culture making everybody
aware of the existing risk and good practices to follow. Further guidelines can be found at
ISO/IEC 29180:2012 standard, Information technology — Telecommunications and infor-
mation exchange between systems — Security framework for ubiquitous sensor networks;
ISO/IEC 27033:2015, Information technology — Security techniques — Network security;
and ISO/IEC 27000 standard family, Information security management.

R5. Connectivity: access to data is crucial for a self-configuring system to respond according
to the circumstances. For this, a reliable network is necessary, tolerant to faults, with the
right cost-benefit in terms of the required infrastructure and system requirements.

R6. Data integration and management: all data generated in and by the system needs to be
available for the relevant stakeholders at the different levels of the organization. Then, rele-
vant and updated information needs to be spread through the data management platforms

u This project has received funding from -15-
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at all levels, which is highly related to the interoperability and connectivity requirements
mentioned previously. The frequency in which these systems should be updated needs
to be assessed internally, considering the amount of data collected and the infrastructure
capabilities. Additionally, how much of this information is stored for the long term, with
which frequency and the backup method need to be considered to optimize costs without
jeopardizing the system in case of faults.

R7. Robustness: the production system and its internal subsystems need to be able to han-
dle disturbances and be fault-tolerant to maintain the productivity level at the desired
range [28]. Several strategies can be considered, including dynamic scheduling and self-
healing methods, most of which will require a flexible and redundant infrastructure at all
levels.

R8. Monitoring: the elements of a system or the system itself are able to keep track of its
own performance, logging process data to further analyze it [23]. Data capture devices like
sensors are necessary to keep track of this information.

R9. Real time capability: the elements of a system can respond fast enough to an event
without having a noticeable delay that compromises the normal functioning of the opera-
tions.

R10. Analysis: the term is taken from the context of autonomous computing. In manufacturing
automation, it refers to the capacity of analyzing and interpreting manufacturing data from
various sources to gain insights, identify trends, and malfunctions, and with that consider
proper actions.

R11. Planning: unlike analysis, planning refers to the capacity of the manufacturing system to
generate a sequence of actions that lead to a specific goal, e.g. reconfiguration strategies:
change of position of stations, change of machine parameters, etc.

R12. Scalability: refers to the capacity of a system to adapt its infrastructure when adding or
removing elements e.g., stations, modules, etc. efficiently enough to accommodate available
resources and optimize its usability.

R13. Plug and produce elements: elements that can work once they are physically plugged.
An intelligent infrastructure is able to recognize and orchestrate specific functionalities to
the various manufacturing tasks.

R14. Modularity: self-contained manufacturing modules include necessary hardware and soft-
ware to work stand-alone or to be integrated into an intelligent infrastructure.

R15. Self-learning: refers to the capacity of the system to extract knowledge e.g., from the
operator decision-making and reuse it in an equal/similar context. This learning activity
can increase process adaptability.

R16. Decentralization: decentralization in manufacturing is accomplished when individual
elements within the system, such as workstations, machine tools, AGVs, and products,
have the capability to make independent decisions in real-time, all while working towards

u This project has received funding from -16-
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a shared organizational goal. In this setup, there is no central control unit governing these
elements. The systems operate autonomously, even in the face of external disruptions,
specific exceptions, or conflicting objectives, and are specifically designed to achieve overall
objectives by utilizing localized operational information.

- This project has received funding from -17-
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4 Self-diagnosis

4.1 Definition of self-diagnosis

The self-diagnostic service is designed to monitor and analyze the operational state of machines
in real-time, enabling proactive maintenance and minimizing downtime. It utilizes advanced al-
gorithms and machine learning techniques to detect anomalies, predict faults, find the root-cause
of failures, and provide recommendations for maintenance actions. Self-diagnostic is responsible
for analyzing the data collected through sensors from the machines and equipment to determine
their health and performance. The service will take inputs from sensors built for monitoring
variables as temperature, pressure, vibration, and any other relevant feature. The system then
analyzes this data to find and predict any anomalies or issues and send an output to specify the
root cause of the problem and possible solutions.

- This project has received funding from -18-
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4.2 Requirements

R1. Connectivity: enabling connectivity among various equipment is essential. Therefore, all
manufacturing resources should be accessible and capable of communicating with other re-
sources in the network. This entails establishing connections between data source elements
(e.g., sensors), manufacturing assets (e.g., machines), services (e.g., self-X), and all network
layers including edge, fog, and cloud. To achieve seamless interoperability and facilitate
data exchange among these resources, it is crucial to employ open standards and protocols
for connectivity in IIoT and IoT networks. At the field level, commonly utilized trans-
port protocols include Profibus, Ethercat, and CAN. In addition, open standards such as
OPC UA, AutomationML, and MT connect play a pivotal role in enabling data exchange
and fostering interoperability within the IIoT and IoT. IoT applications are time-sensitive
and require streaming instead of batch-processing in real-time [29], which rely heavily on
wireless networking, such as WiFi, and 5G.

R2. Data managing: the manufacturing infrastructure should have the capability to collect
data from the edge devices, transfer data between different layers, and store it in the storage
systems. Each layer is in charge of a specific data management task:

1. The edge layer should be responsible for data acquisition from the edge devices, per-
forming data pre-processing, and transferring the pre-processed data to the fog layer.

2. The fog layer serves as the bridge between the edge and the cloud layers and is
responsible for data transfer.

3. The cloud layer should have data storage capacity and computing power.

Therefore, it is necessary to establish the required IT infrastructure. This includes defining
the data acquisition frequency (i.e., sampling period), determining the required data storage
capacity, defining information structure and data models (e.g., AADL, UML, MARTE), and
implementing the necessary IT resources for data transfer (e.g., routers, switches, servers,
gateways). Additionally, data management should give particular attention to data security
and privacy by establishing the required data security protocols, data protection tools, and
policies. It is important to note that while the cloud layer offers significant computational
power and storage capacity, it introduces some latency to the data. Therefore, if real-time
data analysis is required, the edge layer should also have some additional data storage and
computing capability.

R3. Monitoring and analysis: continuous monitoring and analysis of data is essential to
identify faults, breakdowns, malfunctions, and anomalies, as well as diagnose the under-
lying causes of failures. This encompasses a range of events, from simple changes in re-
source states to more complex events like value fluctuations or other complex patterns [30].
Thereby, observed data must be continuously processed in the edge layer. To begin with,
raw data should be pre-processed by applying data filtering, cleaning by eliminating out-
liers with density clustering, normalization and scaling, and feature extraction techniques.
Machine learning techniques like decision trees can be employed for feature extraction, al-
though deep learning methods have gained attention due to their ability to automatically
extract features from raw data and accurately establish nonlinear mappings of different
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health conditions [31]. The extracted feature data should be sent to the cloud to store it
as historical data to further train machine learning models, i.e. artificial neural networks,
support vector machines, and random forests. Fault diagnosis is usually a classification
problem, thus, pre-processed data can then be used to detect failures using fault identifi-
cation or classification algorithms, such as machine learning or deep learning data-driven
approaches. Fault diagnoses can also be used to determine the root cause of failure, or
predict the Remaining Useful Life (RUL) of the asset with forecasting algorithms. Estab-
lishing the required KPIs is crucial in this context. The outcome of this phase should be a
change request to further explore in R4 for contingency plans.

R4. Planning: self-diagnosis requires a mechanism for making reports and contingency plans.
Fault assessment reports should be derived from expert knowledge and root cause analysis
reports retrieved from R3. In the event of failures, contingency plans should be designed
to create actions with the goal of addressing the issues, making recovery plans or providing
necessary actions to the operators to mitigate the problem. The developed plan can range
from a basic action like shutting down the system to more intricate tasks like altering the
structure or the process model. Lastly, new knowledge obtained from the failure reports
should be used to provide feedback to the internal knowledge storage systems (i.e., R6),
and make any necessary adjustments to KPIs and policies.

R5. Executing: contingency plans developed in R4 should be implemented either in the target
software, which might imply there termination of a task, require some correction in the
actuators, or provide a clear instruction plan to the operators for execution. In addition, all
failure reports need to be promptly alerted and visualised through business dashboards or
HMIs to the relevant stakeholders i.e., operation supervisors and maintenance technicians.
It is important to note that this information may contain confidential data, hence it is
crucial to ensure secure access to the information by establishing proper security measures,
such as two-level authentication.

R6. Knowledge: all data and acquired knowledge should be stored in edge/cloud storage
databases, as they form the core body of the self-diagnosis service. This encompasses a
wide range of information, including historical data, policies and rules, fault symptoms and
conditions, runtime conditions and KPIs, among others. These databases are continuously
updated through the feedback obtained from the self-diagnosis agent.
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5 Conclusion

In this deliverable, we presented a guide for the implementation of self-configuration and self-
diagnosis services in a cloud-based system environment. Such guide aims to be as complete and
comprehensive as possible. The study and collection of requirements was conducted with such a
thorough and methodical approach, that we believe to have formulated the most extended and
esplicative list of requirements to date. The main goal of this work was to provide practitioners
with an implementation guide to enable them to design, prepare, and implement these services in
real-world applications. With an in-depth evaluation of previous research, experiential first-hand
knowledge, and practical implementation, we have identified the key requirements, analyzed ex-
isting architectures, and proposed a novel one that addresses the barriers and problems associated
with the deployment of self-configuration and self-diagnosis services.

The main portion of this work focused on the extraction and extrapolation of requirements
from the initial list that was suggested in previous deliverables [12]. We carefully reviewed
the proposed requirements, extended and focused the list to contain the essential components
necessary to fulfill them. We created a framework and a guideline for practitioners to follow
by mapping these requirements to the corresponding functionalities of self-configuration and
self-diagnosis, as well as identifying common input-outputs relationships between the parts, and
highlighting the main stakeholders responsible for each resource involved. This process ensured
that the guide captures the core aspects for successful implementation, thus enabling interested
companies to create the services they need.

In order to correctly deploy the services and utilize the identified requirements, we conducted
an in-depth analysis of existing architectures and frameworks related to self-configuration and
self-diagnosis, to identify common patterns and approaches that are employed for similar works in
the field, and consequently combined such insights to propose a novel architecture that addresses
the specific challenges of self-configuration and self-diagnosis services in a cloud-based system
environment.

The proposed architecture takes into account the needs of the system for autonomous decision-
making capabilities, emphasizing its scalability, and the adaptability to varying system condi-
tions. The architecture consists of several key components, including an asset layer, an edge and
a fog layer functioning as intermediates before the high-level cloud layer, which is the main party
involved in the services’ activities. All the components are linked to enable self-configuration and
self-diagnosis cohesively, ensuring efficient system operation and reducing manual intervention.

Furthermore, the guide not only provides a comprehensive overview of the proposed archi-
tecture but also offers guidelines and highlights for the implementation process, by suggesting
the main resources to be introduced. From the requirements to system design, to deployment
and maintenance, practitioners are able to leverage the guide to analyze and reduce the difficulty
involved in realizing self-configuration and self-diagnosis services. By following the recommended
architecture and considering the provided insights, practitioners can improve the efficiency and
robustness of their systems.

It is worth noting that the guide can be extended to encompass other services that have been
presented in previous deliverables, such as self-learning and self-organization. Thanks to future
work focusing on the integration of additional services, the guide will offer a comprehensive
resource for implementing end-to-end autonomous functionalities in distributed systems.
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6 Next steps and final remarks

The guide presented in this deliverable is an important milestone towards achieving autonomous
and adaptive cloud-based systems. It lays the foundation for practitioners to implement self-
configuration and self-diagnosis services, and serves as a road map to address critical needs for
system autonomy, offering a list of common requirements and needed resources. By incorporating
such insights, practitioners can improve the situation related to heavy effort required for system
configuration and diagnosis, increasing system availability and improving the overall system
performance.

One of the key advantages of the proposed guide is its ability to extrapolate suggestions for
implementation from the list of specifications, which is as essential and complete as possible,
and allows practitioners to have a clear understanding of the underlying necessities of an au-
tonomous system, while at the same time allowing them to adapt the guide to their specific
system requirements.

The next steps include providing a practical case-study implementation of the services de-
scribed in this deliverable, by applying the proposed architecture and guidelines to a real-world
scenario. This will serve as an evaluation of the effectiveness and practicality of the suggested
approach and of as many of the list’s requirements as possible. This will also help showing the
benefits of self-configuration and self-diagnosis services in improving system performance and
adaptability. Future works also include extending the guide to encompass other autonomous
services, such as self-learning and self-organization, and integrating them into a comprehensive
resource for implementing end-to-end autonomous functionalities in cloud-based systems.
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